Bio inspired computing - A review of algorithms and scope of applications

[1]  Arpan Kumar Kar,et al.  Swarm Intelligence: A Review of Algorithms , 2017 .

[2]  Om Prakash Verma,et al.  Opposition and dimensional based modified firefly algorithm , 2016, Expert Syst. Appl..

[3]  Xin-She Yang,et al.  Application of the flower pollination algorithm in structural engineering , 2016 .

[4]  Micael S. Couceiro,et al.  Particle Swarm Optimization , 2016 .

[5]  Micael S. Couceiro,et al.  Fractional Order Darwinian Particle Swarm Optimization , 2016 .

[6]  Fariborz Jolai,et al.  Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm , 2016, J. Comput. Des. Eng..

[7]  Xin-She Yang,et al.  Sizing optimization of truss structures using flower pollination algorithm , 2015, Appl. Soft Comput..

[8]  Phayung Meesad,et al.  A highly accurate firefly based algorithm for heart disease prediction , 2015, Expert Syst. Appl..

[9]  Yu Liu,et al.  A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization , 2015, Expert Syst. Appl..

[10]  Rajko Svecko,et al.  Feedforward neural network position control of a piezoelectric actuator based on a BAT search algorithm , 2015, Expert Syst. Appl..

[11]  Abbas Khosravi,et al.  Intelligent cuckoo search optimized traffic signal controllers for multi-intersection network , 2015, Expert Syst. Appl..

[12]  Tarun Kumar Rawat,et al.  Optimal design of FIR fractional order differentiator using cuckoo search algorithm , 2015, Expert Syst. Appl..

[13]  Manish Mandloi,et al.  Congestion control based ant colony optimization algorithm for large MIMO detection , 2015, Expert Syst. Appl..

[14]  Nithin V. George,et al.  Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model , 2015, Expert Syst. Appl..

[15]  Faruq Mohammad,et al.  Feature decision-making ant colony optimization system for an automated recognition of plant species , 2015, Expert Syst. Appl..

[16]  Hamid Reza Karimi,et al.  An ant colony optimization-based fuzzy predictive control approach for nonlinear processes , 2015, Inf. Sci..

[17]  Abdul Razak Hamdan,et al.  Multi-population cooperative bat algorithm-based optimization of artificial neural network model , 2015, Inf. Sci..

[18]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[19]  Arpan Kumar Kar,et al.  A hybrid group decision support system for supplier selection using analytic hierarchy process, fuzzy set theory and neural network , 2015, J. Comput. Sci..

[20]  Punam Bedi,et al.  Optimized gray-scale image watermarking using DWT-SVD and Firefly Algorithm , 2014, Expert Syst. Appl..

[21]  S. A. MirHassani,et al.  A hybrid Firefly-Genetic Algorithm for the capacitated facility location problem , 2014, Inf. Sci..

[22]  Gurjit Singh Walia,et al.  Intelligent video target tracking using an evolutionary particle filter based upon improved cuckoo search , 2014, Expert Syst. Appl..

[23]  Haidar Samet,et al.  A new hybrid Modified Firefly Algorithm and Support Vector Regression model for accurate Short Term Load Forecasting , 2014, Expert Syst. Appl..

[24]  Thomas Stützle,et al.  Ant Colony Optimization for Mixed-Variable Optimization Problems , 2014, IEEE Transactions on Evolutionary Computation.

[25]  Ashish Kumar Bhandari,et al.  Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy , 2014, Expert Syst. Appl..

[26]  Xin-She Yang,et al.  Flower pollination algorithm: A novel approach for multiobjective optimization , 2014, ArXiv.

[27]  Thomas Stützle,et al.  A unified ant colony optimization algorithm for continuous optimization , 2014, Eur. J. Oper. Res..

[28]  Xin-She Yang,et al.  A wrapper approach for feature selection based on Bat Algorithm and Optimum-Path Forest , 2014, Expert Syst. Appl..

[29]  Amir Hossein Gandomi,et al.  Chaotic bat algorithm , 2014, J. Comput. Sci..

[30]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[31]  A. Kar A Decision Support System for Website Selection for Internet Based Advertising and Promotions , 2014 .

[32]  Xin-She Yang,et al.  Cuckoo search: recent advances and applications , 2013, Neural Computing and Applications.

[33]  Xin-She Yang,et al.  Binary bat algorithm , 2013, Neural Computing and Applications.

[34]  Janez Brest,et al.  A comprehensive review of firefly algorithms , 2013, Swarm Evol. Comput..

[35]  Anupriya Gogna,et al.  Metaheuristics: review and application , 2013, J. Exp. Theor. Artif. Intell..

[36]  Lotfi Ben Romdhane,et al.  A robust ant colony optimization-based algorithm for community mining in large scale oriented social graphs , 2013, Expert Syst. Appl..

[37]  Arpan Kumar Kar,et al.  Using artificial neural networks and analytic hierarchy process for the supplier selection problem , 2013, 2013 IEEE International Conference on Signal Processing, Computing and Control (ISPCC).

[38]  Xin-She Yang,et al.  Firefly Algorithm: Recent Advances and Applications , 2013, ArXiv.

[39]  Xin-She Yang,et al.  Bat algorithm: literature review and applications , 2013, Int. J. Bio Inspired Comput..

[40]  Zhihua Cui,et al.  Swarm Intelligence and Bio-Inspired Computation: Theory and Applications , 2013 .

[41]  Zhihua Cui,et al.  Artificial Plant Optimization Algorithm with Correlation Branches , 2013 .

[42]  Xin-She Yang,et al.  Multiobjective cuckoo search for design optimization , 2013, Comput. Oper. Res..

[43]  Sankaran Mahadevan,et al.  Solving 0-1 knapsack problems based on amoeboid organism algorithm , 2013, Appl. Math. Comput..

[44]  Xin-She Yang,et al.  Chaos-enhanced accelerated particle swarm optimization , 2013, Commun. Nonlinear Sci. Numer. Simul..

[45]  Xin-She Yang,et al.  Firefly algorithm with chaos , 2013, Commun. Nonlinear Sci. Numer. Simul..

[46]  Xingjuan Cai,et al.  Artificial Plant Optimization Algorithm , 2013 .

[47]  Dervis Karaboga,et al.  A comprehensive survey: artificial bee colony (ABC) algorithm and applications , 2012, Artificial Intelligence Review.

[48]  Z. Cui,et al.  Using Artificial Plant Optimization Algorithm to Solve Coverage Problem in WSN , 2012 .

[49]  Amir Hossein Alavi,et al.  Krill herd: A new bio-inspired optimization algorithm , 2012 .

[50]  Xin-She Yang,et al.  Flower Pollination Algorithm for Global Optimization , 2012, UCNC.

[51]  Amir Hossein Gandomi,et al.  Bat algorithm for constrained optimization tasks , 2012, Neural Computing and Applications.

[52]  A. Gandomi,et al.  Bat algorithm: a novel approach for global engineering optimization , 2012, 1211.6663.

[53]  Xia Li,et al.  An improved shuffled frog-leaping algorithm with extremal optimisation for continuous optimisation , 2012, Inf. Sci..

[54]  Chen Fang,et al.  An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem , 2012, Comput. Oper. Res..

[55]  Weifeng Gao,et al.  A modified artificial bee colony algorithm , 2012, Comput. Oper. Res..

[56]  Amir Hossein Gandomi,et al.  Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect , 2012, Appl. Soft Comput..

[57]  Wen-Tsao Pan,et al.  A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example , 2012, Knowl. Based Syst..

[58]  Tzung-Pei Hong,et al.  A multi-level ant-colony mining algorithm for membership functions , 2012, Inf. Sci..

[59]  A. Gandomi,et al.  Mixed variable structural optimization using Firefly Algorithm , 2011 .

[60]  Taher Niknam,et al.  A modified shuffle frog leaping algorithm for multi-objective optimal power flow , 2011 .

[61]  Xin-She Yang,et al.  Bat algorithm for multi-objective optimisation , 2011, Int. J. Bio Inspired Comput..

[62]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[63]  Xin-She Yang,et al.  Review of Metaheuristics and Generalized Evolutionary Walk Algorithm , 2011, 1105.3668.

[64]  Jun Zhang,et al.  Orthogonal Learning Particle Swarm Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[65]  Wu,et al.  The Wolf Colony Algorithm and Its Application , 2011 .

[66]  Dervis Karaboga,et al.  A novel clustering approach: Artificial Bee Colony (ABC) algorithm , 2011, Appl. Soft Comput..

[67]  Arash Bahrammirzaee,et al.  A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems , 2010, Neural Computing and Applications.

[68]  Tao Mei,et al.  Post-disaster restoration based on fuzzy preference relation and Bean Optimization Algorithm , 2010, 2010 IEEE Youth Conference on Information, Computing and Telecommunications.

[69]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010, Int. J. Math. Model. Numer. Optimisation.

[70]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[71]  Xin-She Yang,et al.  Eagle Strategy Using Lévy Walk and Firefly Algorithms for Stochastic Optimization , 2010, NICSO.

[72]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[73]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[74]  Kevin M. Passino,et al.  Bacterial Foraging Optimization , 2010, Int. J. Swarm Intell. Res..

[75]  Bart Baesens,et al.  Editorial survey: swarm intelligence for data mining , 2010, Machine Learning.

[76]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[77]  Mu-Chun Su,et al.  A swarm-inspired projection algorithm , 2009, Pattern Recognit..

[78]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[79]  Slawomir Zak,et al.  Firefly Algorithm for Continuous Constrained Optimization Tasks , 2009, ICCCI.

[80]  Ajith Abraham,et al.  Adaptive Computational Chemotaxis in Bacterial Foraging Optimization: An Analysis , 2009, IEEE Transactions on Evolutionary Computation.

[81]  Dervis Karaboga,et al.  A survey: algorithms simulating bee swarm intelligence , 2009, Artificial Intelligence Review.

[82]  Amit Konar,et al.  On Stability of the Chemotactic Dynamics in Bacterial-Foraging Optimization Algorithm , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[83]  Wei-Chiang Hong,et al.  Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model , 2009 .

[84]  Anthony Kulis,et al.  Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies , 2009, Scalable Comput. Pract. Exp..

[85]  Ajith Abraham,et al.  Bacterial Foraging Optimization Algorithm: Theoretical Foundations, Analysis, and Applications , 2009, Foundations of Computational Intelligence.

[86]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[87]  Ajith Abraham,et al.  Synergy of PSO and Bacterial Foraging Optimization - A Comparative Study on Numerical Benchmarks , 2008, Innovations in Hybrid Intelligent Systems.

[88]  A. Mucherino,et al.  Monkey search: a novel metaheuristic search for global optimization , 2007 .

[89]  Alireza Rahimi-Vahed,et al.  A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly line sequencing problem , 2007, Comput. Ind. Eng..

[90]  Donald E. Grierson,et al.  A modified shuffled frog-leaping optimization algorithm: applications to project management , 2007 .

[91]  Y. Qiang Comparison of A New Model of Light Response of Photosynthesis with Traditional Models , 2007 .

[92]  E. Kim,et al.  A survey of decision support system applications (1995–2001) , 2006, J. Oper. Res. Soc..

[93]  Muzaffar Eusuff,et al.  Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization , 2006 .

[94]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[95]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[96]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[97]  Debasish Ghose,et al.  Detection of multiple source locations using a glowworm metaphor with applications to collective robotics , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[98]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[99]  Kevin E Lansey,et al.  Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm , 2003 .

[100]  Haldun Aytug,et al.  Use of genetic algorithms to solve production and operations management problems: A review , 2003 .

[101]  Colin R. Reeves,et al.  Genetic Algorithms: Principles and Perspectives: A Guide to Ga Theory , 2002 .

[102]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[103]  Jouko Lampinen,et al.  Bayesian approach for neural networks--review and case studies , 2001, Neural Networks.

[104]  Jan A. Snyman,et al.  The LFOPC leap-frog algorithm for constrained optimization , 2000 .

[105]  Ali M. S. Zalzala,et al.  Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons , 2000, IEEE Trans. Evol. Comput..

[106]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[107]  Johann E. W. Holm,et al.  Leap-frog is a robust algorithm for training neural networks. , 1999, Network.

[108]  Yoelle Maarek,et al.  The Shark-Search Algorithm. An Application: Tailored Web Site Mapping , 1998, Comput. Networks.

[109]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[110]  Jude W. Shavlik,et al.  Using neural networks for data mining , 1997, Future Gener. Comput. Syst..

[111]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[112]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[113]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[114]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1994 .

[115]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[116]  Nader Sadegh,et al.  A perceptron network for functional identification and control of nonlinear systems , 1993, IEEE Trans. Neural Networks.

[117]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[118]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[119]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[120]  Guy Theraulaz,et al.  Task differentiation in Polistes wasp colonies: a model for self-organizing groups of robots , 1991 .

[121]  Melanie Mitchell,et al.  The royal road for genetic algorithms: Fitness landscapes and GA performance , 1991 .

[122]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[123]  D. G. Bounds,et al.  A multilayer perceptron network for the diagnosis of low back pain , 1988, IEEE 1988 International Conference on Neural Networks.

[124]  Stephen Grossberg,et al.  Nonlinear neural networks: Principles, mechanisms, and architectures , 1988, Neural Networks.

[125]  M. Shlesinger,et al.  Lévy Walks Versus Lévy Flights , 1986 .

[126]  John J. Grefenstette,et al.  Genetic algorithms and their applications , 1987 .

[127]  J. Snyman A new and dynamic method for unconstrained minimization , 1982 .

[128]  A. Gray,et al.  I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .

[129]  C. Darwin The Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life , 1859 .