Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II; Validation

Clouds and the Earth’s Radiant Energy System (CERES) investigates the critical role that clouds and aerosols play in modulating the radiative energy flow within the Earth‐atmosphere system. CERES builds upon the foundation laid by previous missions, such as the Earth Radiation Budget Experiment, to provide highly accurate top-of-atmosphere (TOA) radiative fluxes together with coincident cloud and aerosol properties inferred from high-resolution imager measurements. This paper describes the method used to construct empirical angular distribution models (ADMs) for estimating shortwave, longwave, and window TOA radiative fluxes from CERES radiance measurements on board the Tropical Rainfall Measuring Mission satellite. To construct the ADMs, multiangle CERES measurements are combined with coincident high-resolution Visible Infrared Scanner measurements and meteorological parameters from the European Centre for Medium-Range Weather Forecasts data assimilation product. The ADMs are stratified by scene types defined by parameters that have a strong influence on the angular dependence of Earth’s radiation field at the TOA. Examples of how the new CERES ADMs depend upon the imager-based parameters are provided together with comparisons with existing models.

[1]  WALTER MUNK SOME PROBLEMS IN OPTICAL OCEANOGRAPHY , 2019 .

[2]  Bruce A. Wielicki,et al.  Defining Top-of-the-Atmosphere Flux Reference Level for Earth Radiation Budget Studies , 2002 .

[3]  Brian Cairns,et al.  Global Two-Channel AVHRR Retrievals of Aerosol Properties over the Ocean for the Period of NOAA-9 Observations and Preliminary Retrievals Using NOAA-7 and NOAA-11 Data , 2002 .

[4]  Alexander Ignatov,et al.  Aerosol Retrievals from Individual AVHRR Channels. Part I: Retrieval Algorithm and Transition from Dave to 6S Radiative Transfer Model , 2002 .

[5]  B. Wielicki,et al.  Shortwave Flux from Satellite-Measured Radiance: A Theoretical Study over Marine Boundary Layer Clouds , 2001 .

[6]  Atmospheric Corrections Using MODTRAN for TOA and Surface BRDF Characteristics from High Resolution Spectroradiometric/Angular Measurements from a Helicopter Platform , 2001 .

[7]  Bruce A. Wielicki,et al.  Determination of Unfiltered Radiances from the Clouds and the Earth’s Radiant Energy System Instrument , 2001 .

[8]  Joyce Chou,et al.  Estimation of Shortwave Direct Radiative Forcing of Biomass-Burning Aerosols Using New Angular Models , 2000 .

[9]  Zhanqing Li,et al.  The Dependence of TOA Reflectance Anisotropy on Cloud Properties Inferred from ScaRaB Satellite Data , 2000 .

[10]  P. Minnis,et al.  Anisotropy of Land Surface Skin Temperature Derived from Satellite Data , 2000 .

[11]  Bryan A. Baum,et al.  Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 1. Data and models , 2000 .

[12]  Norman G. Loeb,et al.  Top-of-Atmosphere Albedo Estimation from Angular Distribution Models Using Scene Identification from Satellite Cloud Property Retrievals , 2000 .

[13]  K. Liou,et al.  Parameterization of the scattering and absorption properties of individual ice crystals , 2000 .

[14]  Ronald M. Welch,et al.  CERES cloud properties derived from multispectral VIRS data , 1999, Remote Sensing.

[15]  J. Muller,et al.  New directions in earth observing: Scientific applications of multiangle remote sensing , 1999 .

[16]  E. Clothiaux,et al.  The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. , 1999 .

[17]  Bryan A. Baum,et al.  P 1 . 45 SCENE IDENTIFICATION FOR THE CERES CLOUD ANALYSIS SUBSYSTEM , 1999 .

[18]  Patrick Minnis,et al.  P2.42 VISIBLE CLEAR-SKY AND NEAR-INFRARED SURFACE ALBEDOS DERIVED FROM VIRS DATA FOR CERES , 1999 .

[19]  Kory J. Priestley,et al.  Radiometric Performance of the Clouds and The Earth's Radiant Energy System (CERES) Proto-Flight Model on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft for 1998 , 1999 .

[20]  Patrick Minnis,et al.  Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties , 1998 .

[21]  M. Capderou Determination of the Shortwave Anisotropic Function for Clear-Sky Desert Scenes from ScaRaB Data: Comparison with Models Issued from Other Satellite Data , 1998 .

[22]  P. Courtier,et al.  Extended assimilation and forecast experiments with a four‐dimensional variational assimilation system , 1998 .

[23]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[24]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[25]  Robert S. Kandel,et al.  The ScaRaB Earth Radiation Budget Dataset , 1998 .

[26]  R. Davies,et al.  Apparent breakdown of reciprocity in reflected solar radiances , 1998 .

[27]  A. Belward,et al.  The international geosphere biosphere programme data and information system global land cover data set (DIScover) , 1997 .

[28]  A. Ignatov Estimation of the Aerosol Phase Function in Backscatter from Simultaneous Satellite and Sun-Photometer Measurements , 1997 .

[29]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[30]  M. Herman,et al.  Cloud detection and derivation of cloud properties from POLDER , 1997 .

[31]  David P. Kratz,et al.  Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document , 1997 .

[32]  H. Barker,et al.  A Parameterization for Computing Grid-Averaged Solar Fluxes for Inhomogeneous Marine Boundary Layer Clouds. Part II: Validation Using Satellite Data , 1996 .

[33]  R. Joyce,et al.  Evaluating the Design of an Earth Radiation Budget Instrument with System Simulations. Part III: CERES-I Diurnal Sampling Error , 1996 .

[34]  D. Randall,et al.  Mission to planet Earth: Role of clouds and radiation in climate , 1995 .

[35]  G L Smith Effects of time response on the point spread function of a scanning radiometer. , 1994, Applied optics.

[36]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[37]  Donald W. Deering,et al.  A simple analytical function for bidirectional reflectance , 1992 .

[38]  Ronald M. Welch,et al.  Polar Cloud and Surface Classification Using AVHRR Imagery: An Intercomparison of Methods , 1992 .

[39]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[40]  M. A. Goodberlet,et al.  Ocean surface wind speed measurements of the Special Sensor Microwave/Imager (SSM/I) , 1990 .

[41]  Bruce A. Wielicki,et al.  Cloud Identification for ERBE Radiative Flux Retrieval , 1989 .

[42]  Patrick Minnis,et al.  Angular radiation models for Earth-atmosphere system. Volume 1: Shortwave radiation , 1988 .

[43]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[44]  Bruce R. Barkstrom,et al.  The Earth Radiation Budget Experiment (ERBE). , 1984 .

[45]  P Koepke,et al.  Effective reflectance of oceanic whitecaps. , 1984, Applied optics.

[46]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[47]  Roger Davies,et al.  Reflected solar radiances from broken cloud scenes and the interpretation of scanner measurements , 1984 .

[48]  S. Tiwari,et al.  Infrared limb-darkening effects for the earth-atmosphere system , 1983 .

[49]  André Morel,et al.  In-water and remote measurements of ocean color , 1980 .

[50]  R E Roberts,et al.  Infrared continuum absorption by atmospheric water vapor in the 8-12-microm window. , 1976, Applied optics.

[51]  R. A. McClatchey,et al.  AFCRL atmospheric absorption line parameters compilation , 1973 .

[52]  G. Plass,et al.  Quasi-Random Model of Band Absorption* , 1962 .