Suppressing trap density and energy loss via skeleton asymmetry strategy enables highly efficient all-small-molecule organic solar cells

[1]  Shao-Jie Fu,et al.  Enhanced performance of inverted polymer solar cells by adding benzyl viologen dichloride into ZnO electron transport layer , 2023, Optical Materials.

[2]  H. Woo,et al.  Isomeric Small Molecule Donor with Terminal Branching Position Directly Attached to the Backbone Enables Efficient All‐Small‐Molecule Organic Solar Cells with Excellent Stability , 2023, Advanced Functional Materials.

[3]  Yuehua Wu,et al.  Correlation of Local Isomerization Induced Lateral and Terminal Torsions with Performance and Stability of Organic Photovoltaics. , 2023, Journal of the American Chemical Society.

[4]  Shuang Yang,et al.  Fullerene‐Liquid‐Crystal‐Induced Micrometer‐Scale Charge‐Carrier Diffusion in Organic Bulk Heterojunction , 2022, Advanced materials.

[5]  Ruijie Ma,et al.  Multifunctional all‐polymer photovoltaic blend with simultaneously improved efficiency (18.04%), stability and mechanical durability , 2022, Aggregate.

[6]  Jianqi Zhang,et al.  High‐Efficiency and Mechanically Robust All‐Polymer Organic Photovoltaic Cells Enabled by Optimized Fibril Network Morphology , 2022, Advanced materials.

[7]  Ruixiang Peng,et al.  Organic Photovoltaics Utilizing Small‐Molecule Donors and Y‐Series Nonfullerene Acceptors , 2022, Advanced materials.

[8]  Linji Yang,et al.  A Two‐in‐One Annealing Enables Dopant Free Block Copolymer Based Organic Solar Cells with over 16% Efficiency , 2022, Chinese Journal of Chemistry.

[9]  Jianqi Zhang,et al.  Benzotriazole‐Based Polymer Acceptor for High‐Efficiency All‐Polymer Solar Cells with High Photocurrent and Low Voltage Loss , 2022, Advanced Energy Materials.

[10]  Huajun Xu,et al.  Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells , 2022, Joule.

[11]  Jianqi Zhang,et al.  Reducing Trap Density in Organic Solar Cells via Extending the Fused Ring Donor Unit of an A–D–A‐Type Nonfullerene Acceptor for Over 17% Efficiency , 2022, Advanced materials.

[12]  Xinhui Lu,et al.  Deciphering the Role of Side‐Chain Engineering and Solvent Vapor Annealing for Binary All‐Small‐Molecule Organic Solar Cells , 2022, Advanced Functional Materials.

[13]  Yongsheng Chen,et al.  15.51% Efficiency All-Small-Molecule Organic Solar Cells Achieved by Symmetric Thiazolyl Substitution , 2022, Nano Energy.

[14]  Haiming Zhu,et al.  Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics , 2022, Advanced Energy Materials.

[15]  B. Zou,et al.  Tuning the Crystallinity and Phase Separation by Two‐Step Annealing Enables Block Copolymer‐Based Organic Solar Cells with 15% Efficiency , 2022, Solar RRL.

[16]  A. Jen,et al.  Intramolecular Choloro-Sulfur Interaction and Asymmetric Side-Chain Isomerization to Balance Crystallinity and Miscibility in All-Small-Molecule Solar Cells. , 2022, Angewandte Chemie.

[17]  F. Gao,et al.  Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18% , 2022, Nature Communications.

[18]  Xinrong Yang,et al.  Single‐Junction Organic Solar Cells with 19.17% Efficiency Enabled by Introducing One Asymmetric Guest Acceptor , 2022, Advanced materials.

[19]  M. Wang,et al.  Simultaneously Decreasing the Bandgap and Voc Loss in Efficient Ternary Organic Solar Cells , 2022, Advanced Energy Materials.

[20]  Xinhui Lu,et al.  High‐Performance All‐Small‐Molecule Organic Solar Cells Enabled by Regio‐Isomerization of Noncovalently Conformational Locks , 2022, Advanced Functional Materials.

[21]  U. Jeng,et al.  Novel Oligomer Enables Green Solvent Processed 17.5% Ternary Organic Solar Cells: Synergistic Energy Loss Reduction and Morphology Fine‐Tuning , 2022, Advanced materials.

[22]  Yanming Sun,et al.  Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers , 2021, Nature Communications.

[23]  K. Wong,et al.  Understanding the Charge Transfer State and Energy Loss Trade-offs in Non-fullerene-Based Organic Solar Cells , 2021, ACS Energy Letters.

[24]  O. Inganäs,et al.  17.25% high efficiency ternary solar cells with increased open-circuit voltage using a high HOMO level small molecule guest donor in a PM6:Y6 blend , 2021, Journal of Materials Chemistry A.

[25]  J. Nelson,et al.  Influence of static disorder of charge transfer state on voltage loss in organic photovoltaics , 2021, Nature Communications.

[26]  F. Gao,et al.  A unified description of non-radiative voltage losses in organic solar cells , 2021, Nature Energy.

[27]  Yuan Zhang,et al.  Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells , 2021, Nature Energy.

[28]  Yuze Lin,et al.  An Electron Acceptor Analogue for Lowering Trap Density in Organic Solar Cells , 2021, Advanced materials.

[29]  Peng Wang,et al.  Over 15% efficiency all-small-molecule organic solar cells enabled by a C-shaped small molecule donor with tailorable asymmetric backbone , 2021 .

[30]  Renqiang Yang,et al.  Backbone Engineering with Asymmetric Core to Finely Tune Phase Separation for High-Performance All-Small-Molecule Organic Solar Cells. , 2021, ACS applied materials & interfaces.

[31]  Yongfang Li,et al.  Random terpolymer based on thiophene-thiazolothiazole unit enabling efficient non-fullerene organic solar cells , 2020, Nature Communications.

[32]  Jianqi Zhang,et al.  15.3% efficiency all-small-molecule organic solar cells enabled by symmetric phenyl substitution , 2020, Science China Materials.

[33]  H. Haneef,et al.  Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices , 2020, Journal of Materials Chemistry C.

[34]  Billy Fanady,et al.  13.34% Efficiency Nonfullerene All-Small-Molecule Organic Solar Cells Enabled by Modulating Crystallinity of Donors via a Fluorination Strategy. , 2019, Angewandte Chemie.

[35]  K. Sun,et al.  All-Small-Molecule Organic Solar Cells with an Ordered Liquid Crystalline Donor , 2019, Joule.

[36]  Jianqi Zhang,et al.  All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies , 2019, Nature Communications.

[37]  Wei Huang,et al.  Highly Sensitive, Fast Response Perovskite Photodetectors Demonstrated in Weak Light Detection Circuit and Visible Light Communication System. , 2019, Small.

[38]  Dane W. deQuilettes,et al.  Charge-Carrier Recombination in Halide Perovskites. , 2019, Chemical reviews.

[39]  J. B. Tok,et al.  Conjugated Carbon Cyclic Nanorings as Additives for Intrinsically Stretchable Semiconducting Polymers , 2019, Advanced materials.

[40]  Martin A. Green,et al.  Pushing to the Limit: Radiative Efficiencies of Recent Mainstream and Emerging Solar Cells , 2019, ACS Energy Letters.

[41]  Liyan Yu,et al.  Diffusion-Limited Crystallization: A Rationale for the Thermal Stability of Non-Fullerene Solar Cells. , 2019, ACS applied materials & interfaces.

[42]  Jacek Ulanski,et al.  Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core , 2019, Joule.

[43]  Renqiang Yang,et al.  A Maverick Asymmetrical Backbone with Distinct Flanked Twist Angles Modulating the Molecular Aggregation and Crystallinity for High Performance Nonfullerene Solar Cells , 2018, Advanced Energy Materials.

[44]  K. Lee,et al.  Hot slot die coating for additive-free fabrication of high performance roll-to-roll processed polymer solar cells , 2018 .

[45]  He Yan,et al.  Design rules for minimizing voltage losses in high-efficiency organic solar cells , 2018, Nature Materials.

[46]  H. Ade,et al.  High‐Efficiency All‐Small‐Molecule Organic Solar Cells Based on an Organic Molecule Donor with Alkylsilyl‐Thienyl Conjugated Side Chains , 2018, Advanced materials.

[47]  T. Kirchartz,et al.  Understanding Thermal Admittance Spectroscopy in Low-Mobility Semiconductors , 2018 .

[48]  Hang Yin,et al.  Balanced Electric Field Dependent Mobilities: A Key to Access High Fill Factors in Organic Bulk Heterojunction Solar Cells , 2018 .

[49]  Seth R. Marder,et al.  Intrinsic non-radiative voltage losses in fullerene-based organic solar cells , 2017, Nature Energy.

[50]  H. Sirringhaus,et al.  Limits for Recombination in a Low Energy Loss Organic Heterojunction. , 2016, ACS nano.

[51]  Itaru Osaka,et al.  High-efficiency polymer solar cells with small photon energy loss , 2015, Nature Communications.

[52]  Timothy M. Burke,et al.  Disorder‐Induced Open‐Circuit Voltage Losses in Organic Solar Cells During Photoinduced Burn‐In , 2015 .

[53]  Timothy M. Burke,et al.  Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open‐Circuit Voltage of Organic Solar Cells , 2015 .

[54]  S. Ciuchi,et al.  The Transient Localization Scenario for Charge Transport in Crystalline Organic Materials , 2015, 1505.02686.

[55]  Daoben Zhu,et al.  An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells , 2015, Advanced materials.

[56]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[57]  David Beljonne,et al.  Approaching disorder-free transport in high-mobility conjugated polymers , 2014, Nature.

[58]  Peter J. Diemer,et al.  Vibration‐Assisted Crystallization Improves Organic/Dielectric Interface in Organic Thin‐Film Transistors , 2013, Advanced materials.

[59]  John A. Carr,et al.  The identification, characterization and mitigation of defect states in organic photovoltaic devices: a review and outlook , 2013 .

[60]  Martin Pfeiffer,et al.  Doping of organic semiconductors , 2013 .

[61]  Mats Andersson,et al.  Quantification of Quantum Efficiency and Energy Losses in Low Bandgap Polymer:Fullerene Solar Cells with High Open‐Circuit Voltage , 2012 .

[62]  C. Deibel,et al.  Electronic Trap States in Methanofullerenes , 2011, 1107.3381.

[63]  C. Deibel,et al.  Oxygen doping of P3HT:PCBM blends: Influence on trap states, charge carrier mobility and solar cell performance , 2010, 1008.4230.

[64]  Bertram Batlogg,et al.  Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals , 2010, 1002.1611.

[65]  Alberto Salleo,et al.  Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. , 2009, Nature materials.

[66]  L. Setti,et al.  Solution‐Grown, Macroscopic Organic Single Crystals Exhibiting Three‐Dimensional Anisotropic Charge‐Transport Properties , 2009 .

[67]  Germany,et al.  Trap distribution and the impact of oxygen-induced traps on the charge transport in poly(3-hexylthiophene) , 2008, 0810.3534.

[68]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[69]  G. Horowitz,et al.  Extracting Parameters from the Current–Voltage Characteristics of Organic Field‐Effect Transistors , 2004 .

[70]  Gilles Horowitz,et al.  An analytical model for organic‐based thin‐film transistors , 1991 .

[71]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .

[72]  Junfeng Tong,et al.  Efficient Ternary Organic Photovoltaic Device with Non-halogen Solvent via Synergistic Inhibiting Charge Recombination and Regulating Morphology , 2023, Journal of Materials Chemistry C.

[73]  Xiangwei Zhu,et al.  Regulating phase separation and molecular stacking by introducing siloxane to small-molecule donors enables high efficiency all-small-molecule organic solar cells , 2022, Energy & Environmental Science.

[74]  Renqiang Yang,et al.  Over 17% efficiency all-small-molecule organic solar cells based on an organic molecular donor employing 2D side chain symmetric-breaking strategy , 2022, Energy & Environmental Science.

[75]  Shirong Lu,et al.  Additive-induced miscibility regulation and hierarchical morphology enable 17.5% binary organic solar cells , 2021 .

[76]  Thomas Kirchartz,et al.  Quantifying Losses in Open-Circuit Voltage in Solution-Processable Solar Cells , 2015 .