The cotton protein GhIQD21 interacts with GhCaM7 and modulates organ morphogenesis in Arabidopsis by influencing microtubule stability

[1]  K. Zuo,et al.  Cotton microtubule-associated protein GhMAP20L5 mediates fiber elongation through the interaction with the tubulin GhTUB13. , 2022, Plant science : an international journal of experimental plant biology.

[2]  Haifu Tu,et al.  IQ67 DOMAIN protein 21 is critical for indentation formation in pavement cell morphogenesis. , 2022, Journal of integrative plant biology.

[3]  M. Luo,et al.  GhIQD10 interacts with GhCaM7 to control cotton fiber elongation via calcium signaling , 2022, The Crop Journal.

[4]  Fei Yu,et al.  The wheat TaIQD3D-6 gene encodes a microtubule-associated protein and regulates cell morphogenesis in Arabidopsis. , 2022, Plant science : an international journal of experimental plant biology.

[5]  Yanhua Fan,et al.  Sphingolipid synthesis inhibitor fumonisin B1 causes verticillium wilt in cotton. , 2022, Journal of integrative plant biology.

[6]  P. Kumari,et al.  IQ67 DOMAIN proteins facilitate preprophase band formation and division-plane orientation , 2021, Nature Plants.

[7]  Sudhir Kumar,et al.  MEGA11: Molecular Evolutionary Genetics Analysis Version 11 , 2021, Molecular biology and evolution.

[8]  Yujie Liu,et al.  Ectopic expression of GhIQD14 (cotton IQ67 domain-containing protein 14) causes twisted organ and modulates secondary wall formation in Arabidopsis. , 2021, Plant physiology and biochemistry : PPB.

[9]  Margaret H. Frank,et al.  TBtools - an integrative toolkit developed for interactive analyses of big biological data. , 2020, Molecular plant.

[10]  Chunyi Zhang,et al.  Overexpression of a maize BR transcription factor ZmBZR1 in Arabidopsis enlarges organ and seed size of the transgenic plants. , 2020, Plant science : an international journal of experimental plant biology.

[11]  H. Xue,et al.  Rice microtubule‐associated protein IQ67‐DOMAIN14 regulates grain shape by modulating microtubule cytoskeleton dynamics , 2019, Plant biotechnology journal.

[12]  Kunbo Wang,et al.  Knockdown of GhIQD31 and GhIQD32 increases drought and salt stress sensitivity in Gossypium hirsutum. , 2019, Plant physiology and biochemistry : PPB.

[13]  M. Lercher,et al.  Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees , 2019, Nucleic Acids Res..

[14]  Y. Li,et al.  Genome-wide analysis of the Chinese cabbage IQD gene family and the response of BrIQD5 in drought resistance , 2019, Plant Molecular Biology.

[15]  P. Kumari,et al.  Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana , 2018, Journal of experimental botany.

[16]  Yi Zhang,et al.  The Microtubule-Associated Protein IQ67 DOMAIN5 Modulates Microtubule Dynamics and Pavement Cell Shape1 , 2018, Plant Physiology.

[17]  Han Xiao,et al.  The tomato IQD gene SUN24 regulates seed germination through ABA signaling pathway , 2018, Planta.

[18]  Jie Sun,et al.  Identification and Functional Characterization of a Microtubule-Associated Protein, GhCLASP2, From Upland Cotton (Gossypium hirsutum L.) , 2018, Front. Plant Sci..

[19]  K. Bürstenbinder,et al.  Functions of IQD proteins as hubs in cellular calcium and auxin signaling: A toolbox for shape formation and tissue-specification in plants? , 2017, Plant signaling & behavior.

[20]  A. Bacic,et al.  The cotton &bgr;‐galactosyltransferase 1 (GalT1) that galactosylates arabinogalactan proteins participates in controlling fiber development , 2017, The Plant journal : for cell and molecular biology.

[21]  G. Hause,et al.  The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus1[OPEN] , 2017, Plant Physiology.

[22]  Fuguang Li,et al.  GhCaM7-like, a calcium sensor gene, influences cotton fiber elongation and biomass production. , 2016, Plant physiology and biochemistry : PPB.

[23]  Xiaohong Wang,et al.  TCS1, a Microtubule-Binding Protein, Interacts with KCBP/ZWICHEL to Regulate Trichome Cell Shape in Arabidopsis thaliana , 2016, PLoS genetics.

[24]  Y. Xiang,et al.  Genome-wide analysis of the IQD gene family in maize , 2016, Molecular Genetics and Genomics.

[25]  Lei Fang,et al.  Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement , 2015, Nature Biotechnology.

[26]  T. Murata,et al.  The role of dynamic instability in microtubule organization , 2014, Front. Plant Sci..

[27]  E. van der Knaap,et al.  What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape , 2014, Front. Plant Sci..

[28]  Lili Tu,et al.  The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. , 2014, The New phytologist.

[29]  D. Ehrhardt,et al.  A Mechanism for Reorientation of Cortical Microtubule Arrays Driven by Microtubule Severing , 2013, Science.

[30]  Jens Müller,et al.  The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking , 2013, Plant signaling & behavior.

[31]  S. Shaw,et al.  Progressive Transverse Microtubule Array Organization in Hormone-Induced Arabidopsis Hypocotyl Cells[W] , 2013, Plant Cell.

[32]  E. Knaap,et al.  Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato , 2013, Molecular Genetics and Genomics.

[33]  R. Kwong,et al.  Arabidopsis Calmodulin-binding Protein IQ67-Domain 1 Localizes to Microtubules and Interacts with Kinesin Light Chain-related Protein-1* , 2012, The Journal of Biological Chemistry.

[34]  Asa Ben-Hur,et al.  Experimental and computational approaches for the study of calmodulin interactions. , 2011, Phytochemistry.

[35]  H. Čelešnik,et al.  Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression[W][OA] , 2011, Plant Cell.

[36]  Yuxian Zhu,et al.  How cotton fibers elongate: a tale of linear cell-growth mode. , 2011, Current opinion in plant biology.

[37]  Anna Akhmanova,et al.  Tracking the ends: a dynamic protein network controls the fate of microtubule tips , 2008, Nature Reviews Molecular Cell Biology.

[38]  Z. Chen,et al.  Gene expression changes and early events in cotton fibre development. , 2007, Annals of botany.

[39]  Xueying Guan,et al.  Arabidopsis trichome research sheds light on cotton fiber development mechanisms , 2007 .

[40]  Lifeng Jin,et al.  Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 Functions in Directional Cell Growth by Destabilizing Cortical Microtubules , 2007, The Plant Cell Online.

[41]  B. Ranty,et al.  Plant Calmodulins and Calmodulin-Related Proteins , 2006, Plant signaling & behavior.

[42]  C. Pikaard,et al.  Gateway-compatible vectors for plant functional genomics and proteomics. , 2006, The Plant journal : for cell and molecular biology.

[43]  S. Abel,et al.  Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa , 2005, BMC Evolutionary Biology.

[44]  Yu-Chang Tsai,et al.  Handling calcium signaling: Arabidopsis CaMs and CMLs. , 2005, Trends in plant science.

[45]  S. Abel,et al.  Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. , 2005, The Plant journal : for cell and molecular biology.

[46]  Nicolas Bouché,et al.  Plant-specific calmodulin-binding proteins. , 2005, Annual review of plant biology.

[47]  J. Bothwell,et al.  The evolution of Ca2+ signalling in photosynthetic eukaryotes. , 2005, The New phytologist.

[48]  R. Cyr,et al.  Encounters between Dynamic Cortical Microtubules Promote Ordering of the Cortical Array through Angle-Dependent Modifications of Microtubule Behaviorw⃞ , 2004, The Plant Cell Online.

[49]  A. Reddy,et al.  Proteomics of calcium-signaling components in plants. , 2004, Phytochemistry.

[50]  A. Hetherington,et al.  The generation of Ca(2+) signals in plants. , 2004, Annual review of plant biology.

[51]  T. Bureau,et al.  Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro , 1987, Planta.

[52]  M. Bähler,et al.  Calmodulin signaling via the IQ motif , 2002, FEBS letters.

[53]  H. J. Kim,et al.  Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. , 2001, Plant physiology.

[54]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[55]  J. Mathur,et al.  Microtubule Stabilization Leads to Growth Reorientation in Arabidopsis Trichomes , 2000, Plant Cell.

[56]  E. Nogales Structural insights into microtubule function. , 2000, Annual review of biochemistry.

[57]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[58]  R. Seagull Cytoskeletal Stability Affects Cotton Fiber Initiation , 1998, International Journal of Plant Sciences.

[59]  R. Zielinski CALMODULIN AND CALMODULIN-BINDING PROTEINS IN PLANTS. , 1998, Annual review of plant physiology and plant molecular biology.

[60]  K. Feldmann,et al.  Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Gilroy,et al.  Evidence for Opposing Effects of Calmodulin on Cortical Microtubules , 1996, Plant physiology.

[62]  C. Silflow,et al.  Microtubule Components of the Plant Cell Cytoskeleton , 1994, Plant physiology.