An RBF-FD method for pricing American options under jump-diffusion models
暂无分享,去创建一个
[1] Luca Vincenzo Ballestra,et al. The evaluation of American options in a stochastic volatility model with jumps: An efficient finite element approach , 2010, Comput. Math. Appl..
[2] Younhee Lee,et al. A Second-Order Tridiagonal Method for American Options under Jump-Diffusion Models , 2011, SIAM J. Sci. Comput..
[3] Rama Cont,et al. A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..
[4] Luca Vincenzo Ballestra,et al. Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach , 2013 .
[5] Bengt Fornberg,et al. A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.
[6] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[7] Jari Toivanen,et al. Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..
[8] Jimy Jaffe,et al. Tools for Computational Finance , 2013 .
[9] Jari Toivanen,et al. IMEX schemes for pricing options under jump-diffusion models , 2014 .
[10] G. Fasshauer,et al. Using meshfree approximation for multi‐asset American options , 2004 .
[11] Leif Andersen,et al. Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .
[12] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[13] J. Strikwerda. Finite Difference Schemes and Partial Differential Equations , 1989 .
[14] Jun-Feng Yin,et al. Finite Volume Method for Pricing European and American Options under Jump-Diffusion Models , 2017 .
[15] Jesper Andreasen,et al. Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .
[16] A. I. Tolstykh,et al. On using radial basis functions in a “finite difference mode” with applications to elasticity problems , 2003 .
[17] Jamal Amani Rad,et al. Pricing American options under jump-diffusion models using local weak form meshless techniques , 2017, Int. J. Comput. Math..
[18] Haiming Song,et al. Weak Galerkin finite element method for valuation of American options , 2014 .
[19] Jari Toivanen,et al. Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..
[20] Mohan K. Kadalbajoo,et al. Second Order Accurate IMEX Methods for Option Pricing Under Merton and Kou Jump-Diffusion Models , 2015, J. Sci. Comput..
[21] B. Fornberg,et al. Radial basis function interpolation: numerical and analytical developments , 2003 .
[22] Manuel Kindelan,et al. RBF-FD formulas and convergence properties , 2010, J. Comput. Phys..
[23] Kai Zhang,et al. Pricing options under jump diffusion processes with fitted finite volume method , 2008, Appl. Math. Comput..
[24] Ahmad Golbabai,et al. Radial basis functions with application to finance: American put option under jump diffusion , 2012, Math. Comput. Model..
[25] Jari Toivanen,et al. Comparison and survey of finite difference methods for pricing American options under finite activity jump-diffusion models , 2012, Int. J. Comput. Math..
[26] Younhee Lee,et al. A Second-order Finite Difference Method for Option Pricing Under Jump-diffusion Models , 2011, SIAM J. Numer. Anal..
[27] Kevin Parrott,et al. Multigrid for American option pricing with stochastic volatility , 1999 .
[28] Bengt Fornberg,et al. Solving PDEs with radial basis functions * , 2015, Acta Numerica.
[29] Tobin A. Driscoll,et al. Adaptive residual subsampling methods for radial basis function interpolation and collocation problems , 2007, Comput. Math. Appl..
[30] P. Forsyth,et al. Robust numerical methods for contingent claims under jump diffusion processes , 2005 .
[31] Simon Hubbert,et al. Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme , 2014 .
[32] R. Mollapourasl,et al. Radial Basis Functions with Partition of Unity Method for American Options with Stochastic Volatility , 2019 .
[33] R. Plemmons. M-matrix characterizations.I—nonsingular M-matrices , 1977 .
[34] John H. Lin. JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS , 2011 .
[35] C. Shu,et al. Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .
[36] M. K. Kadalbajoo,et al. A radial basis function based implicit-explicit method for option pricing under jump-diffusion models , 2016 .
[37] Jari Toivanen,et al. An Iterative Method for Pricing American Options Under Jump-Diffusion Models , 2011 .
[38] Xun Lu,et al. RBF-PU method for pricing options under the jump-diffusion model with local volatility , 2018, J. Comput. Appl. Math..
[39] Kailash C. Patidar,et al. Contour integral method for European options with jumps , 2013, Commun. Nonlinear Sci. Numer. Simul..
[40] Kailash C. Patidar,et al. Robust spectral method for numerical valuation of european options under Merton's jump-diffusion model , 2014 .
[41] Shuhua Zhang,et al. A front-fixing finite element method for the valuation of American options with regime switching , 2012, Int. J. Comput. Math..
[42] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[43] M. K. Kadalbajoo,et al. Application of the local radial basis function-based finite difference method for pricing American options , 2015, Int. J. Comput. Math..
[44] Cornelis W. Oosterlee,et al. Accurate American Option Pricing by Grid Stretching and High Order Finite Differences , 2022 .
[45] Ron T. L. Chan,et al. Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models , 2016 .
[46] Christina C. Christara,et al. Option pricing in jump diffusion models with quadratic spline collocation , 2016, Appl. Math. Comput..
[47] Muddun Bhuruth,et al. A new radial basis functions method for pricing American options under Merton's jump-diffusion model , 2012, Int. J. Comput. Math..
[48] Cornelis W. Oosterlee,et al. A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options under L[e-acute]vy Processes , 2008, SIAM J. Sci. Comput..
[49] George Labahn,et al. A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.
[50] G. Russo,et al. Implicit–explicit numerical schemes for jump–diffusion processes , 2007 .