An RBF-FD method for pricing American options under jump-diffusion models

Abstract American option prices under jump–diffusion models are determined as solutions to partial integro-differential equations (PIDE). In this paper a new combination of a time and spatial discretization applied to a linear complementary formulation (LCP) of the free boundary PIDE is proposed. First a coordinate stretching transformation is performed to the asset price so that the computation of the prices can be focused on regions of real interest instead of on the whole solution domain. An implicit–explicit time discretization applied to the reformulated LCP on a uniform temporal grid is followed by a spatial discretization to get a fully discrete system. The radial basis function (RBF) finite difference method is a local method resulting in a sparse linear system in contrast to global RBF-methods which lead to ill-conditioned dense matrix systems. For the corresponding European option we prove consistency, stability and second-order convergence in a discrete L 2 -norm. We derive mild conditions for the model parameters under which these results hold. Numerical experiments are performed with European and American options, and a comparison with numerical results available in the literature illustrates the accuracy and efficiency of the proposed algorithm.

[1]  Luca Vincenzo Ballestra,et al.  The evaluation of American options in a stochastic volatility model with jumps: An efficient finite element approach , 2010, Comput. Math. Appl..

[2]  Younhee Lee,et al.  A Second-Order Tridiagonal Method for American Options under Jump-Diffusion Models , 2011, SIAM J. Sci. Comput..

[3]  Rama Cont,et al.  A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..

[4]  Luca Vincenzo Ballestra,et al.  Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach , 2013 .

[5]  Bengt Fornberg,et al.  A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.

[6]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[7]  Jari Toivanen,et al.  Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..

[8]  Jimy Jaffe,et al.  Tools for Computational Finance , 2013 .

[9]  Jari Toivanen,et al.  IMEX schemes for pricing options under jump-diffusion models , 2014 .

[10]  G. Fasshauer,et al.  Using meshfree approximation for multi‐asset American options , 2004 .

[11]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[12]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[13]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[14]  Jun-Feng Yin,et al.  Finite Volume Method for Pricing European and American Options under Jump-Diffusion Models , 2017 .

[15]  Jesper Andreasen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .

[16]  A. I. Tolstykh,et al.  On using radial basis functions in a “finite difference mode” with applications to elasticity problems , 2003 .

[17]  Jamal Amani Rad,et al.  Pricing American options under jump-diffusion models using local weak form meshless techniques , 2017, Int. J. Comput. Math..

[18]  Haiming Song,et al.  Weak Galerkin finite element method for valuation of American options , 2014 .

[19]  Jari Toivanen,et al.  Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..

[20]  Mohan K. Kadalbajoo,et al.  Second Order Accurate IMEX Methods for Option Pricing Under Merton and Kou Jump-Diffusion Models , 2015, J. Sci. Comput..

[21]  B. Fornberg,et al.  Radial basis function interpolation: numerical and analytical developments , 2003 .

[22]  Manuel Kindelan,et al.  RBF-FD formulas and convergence properties , 2010, J. Comput. Phys..

[23]  Kai Zhang,et al.  Pricing options under jump diffusion processes with fitted finite volume method , 2008, Appl. Math. Comput..

[24]  Ahmad Golbabai,et al.  Radial basis functions with application to finance: American put option under jump diffusion , 2012, Math. Comput. Model..

[25]  Jari Toivanen,et al.  Comparison and survey of finite difference methods for pricing American options under finite activity jump-diffusion models , 2012, Int. J. Comput. Math..

[26]  Younhee Lee,et al.  A Second-order Finite Difference Method for Option Pricing Under Jump-diffusion Models , 2011, SIAM J. Numer. Anal..

[27]  Kevin Parrott,et al.  Multigrid for American option pricing with stochastic volatility , 1999 .

[28]  Bengt Fornberg,et al.  Solving PDEs with radial basis functions * , 2015, Acta Numerica.

[29]  Tobin A. Driscoll,et al.  Adaptive residual subsampling methods for radial basis function interpolation and collocation problems , 2007, Comput. Math. Appl..

[30]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[31]  Simon Hubbert,et al.  Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme , 2014 .

[32]  R. Mollapourasl,et al.  Radial Basis Functions with Partition of Unity Method for American Options with Stochastic Volatility , 2019 .

[33]  R. Plemmons M-matrix characterizations.I—nonsingular M-matrices , 1977 .

[34]  John H. Lin JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS , 2011 .

[35]  C. Shu,et al.  Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .

[36]  M. K. Kadalbajoo,et al.  A radial basis function based implicit-explicit method for option pricing under jump-diffusion models , 2016 .

[37]  Jari Toivanen,et al.  An Iterative Method for Pricing American Options Under Jump-Diffusion Models , 2011 .

[38]  Xun Lu,et al.  RBF-PU method for pricing options under the jump-diffusion model with local volatility , 2018, J. Comput. Appl. Math..

[39]  Kailash C. Patidar,et al.  Contour integral method for European options with jumps , 2013, Commun. Nonlinear Sci. Numer. Simul..

[40]  Kailash C. Patidar,et al.  Robust spectral method for numerical valuation of european options under Merton's jump-diffusion model , 2014 .

[41]  Shuhua Zhang,et al.  A front-fixing finite element method for the valuation of American options with regime switching , 2012, Int. J. Comput. Math..

[42]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[43]  M. K. Kadalbajoo,et al.  Application of the local radial basis function-based finite difference method for pricing American options , 2015, Int. J. Comput. Math..

[44]  Cornelis W. Oosterlee,et al.  Accurate American Option Pricing by Grid Stretching and High Order Finite Differences , 2022 .

[45]  Ron T. L. Chan,et al.  Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models , 2016 .

[46]  Christina C. Christara,et al.  Option pricing in jump diffusion models with quadratic spline collocation , 2016, Appl. Math. Comput..

[47]  Muddun Bhuruth,et al.  A new radial basis functions method for pricing American options under Merton's jump-diffusion model , 2012, Int. J. Comput. Math..

[48]  Cornelis W. Oosterlee,et al.  A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options under L[e-acute]vy Processes , 2008, SIAM J. Sci. Comput..

[49]  George Labahn,et al.  A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.

[50]  G. Russo,et al.  Implicit–explicit numerical schemes for jump–diffusion processes , 2007 .