Enhanced resolution based on minimum variance estimation and exponential data modeling
暂无分享,去创建一个
[1] Sabine Van Huffel,et al. Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.
[2] D. van Ormondt,et al. Analysis of NMR Data Using Time Domain Fitting Procedures , 1992 .
[3] Tapan K. Sarkar,et al. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..
[4] D. van Ormondt,et al. Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals , 1987 .
[5] B. De Moor,et al. The fit of a sum of exponentials to noisy data , 1987 .
[6] Fu Li,et al. Unified performance analysis of subspace-based estimation algorithms , 1990, International Conference on Acoustics, Speech, and Signal Processing.
[7] Björn E. Ottersten,et al. Sensor array processing based on subspace fitting , 1991, IEEE Trans. Signal Process..
[8] James A. Cadzow,et al. Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..
[9] R. Kumaresan,et al. Data adaptive signal estimation by singular value decomposition of a data matrix , 1982, Proceedings of the IEEE.
[10] Sabine Van Huffel,et al. Comparison of total least squares and instrumental variable methods for parameter estimation of transfer function models , 1989 .
[11] S. Van Huffel,et al. IMPROVED QUANTITATIVE TIME-DOMAIN ANALYSIS OF NMR DATA BY TOTAL LEAST SQUARES. , 1991 .
[12] R. Kumaresan,et al. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .
[13] K. Arun,et al. State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem , 1983 .
[14] Bart De Moor,et al. The singular value decomposition and long and short spaces of noisy matrices , 1993, IEEE Trans. Signal Process..
[15] Gene H. Golub,et al. Matrix computations , 1983 .
[16] Donald W. Tufts,et al. Estimation of a signal waveform from noisy data using low-rank approximation to a data matrix , 1993, IEEE Trans. Signal Process..