Modified streamline diffusion schemes for convection-diffusion problems

Abstract We consider the design of robust and accurate finite element approximation methods for solving convection—diffusion problems. We develop some two-parameter streamline diffusion schemes with piecewise bilinear (or linear) trial functions and show that these schemes satisfy the necessary conditions for L 2 -uniform convergence of order greater than 1/2 introduced by Stynes and Tobiska M. Stynes and L. Tobiska, Necessary L 2 -uniform convergence conditions for difference schemes for two dimensional convection—diffusion problems, Comput. Math. Applic. 29 (1995) 45–53. For smooth problems, the schemes satisfy error bounds of the form O( h )| u | 2 in an energy norm. In addition, extensive numerical experiments show that they effectively reproduce boundary layers and internal layers caused by discontinuities on relatively coarse grids, without any requirements on alignment of flow and grid.

[1]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[2]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[3]  Rolf Rannacher,et al.  Pointwise superconvergence of the streamline diffusion finite-element method , 1996 .

[4]  O. Axelsson,et al.  Incomplete block-matrix factorization iterative methods for convection-diffusion problems , 1989 .

[5]  W. Hackbusch Multi-Grid Methods , 1994 .

[6]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[7]  P. Hemker,et al.  Mixed defect correction iteration for the accurate solution of the convection diffusion equation , 1982 .

[8]  Guohui Zhou,et al.  How accurate is the streamline diffusion finite element method? , 1997, Math. Comput..

[9]  G. Lube An Asymptotically Fitted Finite Element Method for Convection Dominated Convection-Diffusion-Reaction Problems , 1992 .

[10]  Uno Nävert,et al.  An Analysis of some Finite Element Methods for Advection-Diffusion Problems , 1981 .

[11]  Martin Stynes,et al.  A Comparison of Uniformly Convergent Difference Schemes for Two-Dimensional Convection-Diffusion Problems , 1993 .

[12]  A. H. Schatz,et al.  Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .

[13]  Wiktor Eckhaus,et al.  Boundary Layers in Linear Elliptic Singular Perturbation Problems , 1972 .

[14]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[15]  M. Stynes,et al.  A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in two dimensions , 1991 .

[16]  Lutz Tobiska,et al.  Necessary L2-uniform convergence conditions for difference schemes for two-dimensional convection-diffusion problems , 1995 .

[17]  H. G. Roos Necessary convergence conditions for upwind schemes in the two‐dimensional case , 1985 .

[18]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[19]  A. G. Hutton,et al.  THE NUMERICAL TREATMENT OF ADVECTION: A PERFORMANCE COMPARISON OF CURRENT METHODS , 1982 .

[20]  O. C. Zienkiewicz,et al.  Finite element methods for second order differential equations with significant first derivatives , 1976 .

[21]  Claes Johnson,et al.  On the convergence of a finite element method for a nonlinear hyperbolic conservation law , 1987 .

[22]  Robert L. Lee,et al.  Don''t suppress the wiggles|they''re telling you something! Computers and Fluids , 1981 .