Modeling elastic and photoassisted transport in organic molecular wires: Length dependence and current-voltage characteristics

Using a -orbital tight-binding model, we study the elastic and photoassisted transport properties of metalmolecule-metal junctions based on oligophenylenes of varying lengths. The effect of monochromatic light is modeled with an ac voltage over the contact. We first show how the low-bias transmission function can be obtained analytically, using methods previously employed for simpler chain models. In particular, the decay coefficient of the off-resonant transmission is extracted by considering both a finite-length chain and infinitely extended polyphenylene. Based on these analytical results, we discuss the length dependence of the linearresponse conductance, the thermopower, and the light-induced enhancement of the conductance in the limit of weak intensity and low frequency. In general, the conductance enhancement is calculated numerically as a function of the light frequency. Finally, we compute the current-voltage characteristics at finite dc voltages and show that in the low-voltage regime, the effect of low-frequency light is to induce current steps with a voltage separation determined by twice the frequency. These effects are more pronounced for longer molecules. We study two different profiles for the dc and ac voltages, and it is found that the results are robust with respect to such variations. Although we concentrate here on the specific model of oligophenylenes, the results should be qualitatively similar for many other organic molecules with a large enough electronic gap.

[1]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[2]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[3]  J. Gilman,et al.  Nanotechnology , 2001 .

[4]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.