An algorithm for solving rank-deficient scaled total least square problems
暂无分享,去创建一个
[1] Gene H. Golub,et al. Matrix computations , 1983 .
[2] Sabine Van Huffel,et al. An efficient Total Least Squares algorithm based on a rank-revealing two-sided orthogonal decomposition , 2005, Numerical Algorithms.
[3] C. Loan. On estimating the condition of eigenvalues and eigenvectors , 1987 .
[4] Zdenek Strakos,et al. Bounds for the least squares distance using scaled total least squares , 2002, Numerische Mathematik.
[5] B. Rao. Unified treatment of LS, TLS, and truncated SVD methods using a weighted TLS framework , 1997 .
[6] G. W. Stewart,et al. Matrix algorithms , 1998 .
[7] Christopher C. Paige,et al. Scaled total least squares fundamentals , 2002, Numerische Mathematik.
[8] Musheng Wei,et al. The Analysis for the Total Least Squares Problem with More Than One Solution , 1992, SIAM J. Matrix Anal. Appl..
[9] G. W. Stewart,et al. Matrix Algorithms: Volume 1, Basic Decompositions , 1998 .
[10] James R. Bunch,et al. Bounding the Subspaces from Rank Revealing Two-Sided Orthogonal Decompositions , 1995, SIAM J. Matrix Anal. Appl..
[11] Per Christian Hansen,et al. UTV Tools: Matlab templates for rank-revealing UTV decompositions , 1999, Numerical Algorithms.