Structure-Preserving Reduced Basis Methods for Hamiltonian Systems with a Nonlinear Poisson Structure
暂无分享,去创建一个
[1] David Cohen,et al. Linear energy-preserving integrators for Poisson systems , 2011 .
[2] Danny C. Sorensen,et al. A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction , 2012, SIAM J. Numer. Anal..
[3] Jean-Frédéric Gerbeau,et al. Approximated Lax pairs for the reduced order integration of nonlinear evolution equations , 2014, J. Comput. Phys..
[4] Darboux's Theorem Fails for Weak Symplectic Forms , 1972 .
[5] Ander Murua,et al. An Algebraic Approach to Invariant Preserving Integators: The Case of Quadratic and Hamiltonian Invariants , 2006, Numerische Mathematik.
[6] Danny C. Sorensen,et al. Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..
[7] Jan S. Hesthaven,et al. Structure Preserving Model Reduction of Parametric Hamiltonian Systems , 2017, SIAM J. Sci. Comput..
[8] Rémi Abgrall,et al. Robust model reduction by $$L^{1}$$L1-norm minimization and approximation via dictionaries: application to nonlinear hyperbolic problems , 2016, Adv. Model. Simul. Eng. Sci..
[9] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[10] Bernard Haasdonk,et al. A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space , 2011 .
[11] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[12] Darboux' theorem for Hamiltonian differential operators , 1988 .
[13] Danny C. Sorensen,et al. A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical Systems , 2014, SIAM J. Sci. Comput..
[14] L. Infeld,et al. On the Quantization of the New Field Equations. I , 1934 .
[15] Chi-Wang Shu,et al. A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..
[16] J. H. Brandts,et al. Matlab code for sorting real Schur forms , 2002, Numer. Linear Algebra Appl..
[17] A. Clebsch,et al. Ueber die Integration der hydrodynamischen Gleichungen. , 1859 .
[18] Jerrold E. Marsden,et al. Hamiltonian systems with symmetry, coadjoint orbits and plasma physics , 1983 .
[19] Julien Langou,et al. Rounding error analysis of the classical Gram-Schmidt orthogonalization process , 2005, Numerische Mathematik.
[20] C. S. Gardner,et al. Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .
[21] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[22] P. Morrison,et al. The Maxwell-Vlasov equations as a continuous hamiltonian system , 1980 .
[23] J. Marsden,et al. Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids , 1983 .
[24] Charbel Farhat,et al. The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..
[25] J. Marsden,et al. Structure-preserving Model Reduction of Mechanical Systems , 2000 .
[26] G. Quispel,et al. Geometric Integration Methods that Preserve Lyapunov Functions , 2005 .
[27] Youngsoo Choi,et al. Conservative model reduction for finite-volume models , 2017, J. Comput. Phys..
[28] B. Karasözen,et al. Poisson integrators for Volterra lattice equations , 2005 .
[29] J. Vanneste,et al. Weakly nonlinear dynamics in noncanonical Hamiltonian systems with applications to fluids and plasmas , 2015, 1512.07230.
[30] A. Weinstein. Symplectic manifolds and their lagrangian submanifolds , 1971 .
[31] Wolfgang Dahmen,et al. Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..
[32] U. Ascher,et al. Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .
[33] Fabio Nobile,et al. Symplectic dynamical low rank approximation of wave equations with random parameters , 2020 .
[34] T. H. Gronwall. Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations , 1919 .
[35] Paul T. Boggs,et al. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics , 2014, SIAM J. Sci. Comput..
[36] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[37] G. Quispel,et al. Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[38] Jerrold E. Marsden,et al. Foundations of Mechanics, Second Edition , 1987 .
[39] Mario Ohlberger,et al. Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing , 2013 .
[40] A. Kolmogoroff,et al. Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .
[41] G. Dahlquist. Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .
[42] G. Darboux. Sur le problème de Pfaff , 1882 .
[43] Ahmed Salam,et al. On theoretical and numerical aspects of symplectic Gram–Schmidt-like algorithms , 2005, Numerical Algorithms.
[44] A. Quarteroni,et al. Reduced Basis Techniques For Nonlinear Conservation Laws , 2015 .
[45] A. Patera,et al. A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .
[46] D. C. Youla,et al. A Normal form for a Matrix under the Unitary Congruence Group , 1961, Canadian Journal of Mathematics.
[47] Robert G. Littlejohn,et al. A guiding center Hamiltonian: A new approach , 1979 .
[48] Liqian Peng,et al. Symplectic Model Reduction of Hamiltonian Systems , 2014, SIAM J. Sci. Comput..
[49] H. Faßbender,et al. Some observations on the Youla form and conjugate-normal matrices , 2007 .
[50] Uri M. Ascher,et al. On Symplectic and Multisymplectic Schemes for the KdV Equation , 2005, J. Sci. Comput..
[51] Bernard Haasdonk,et al. Reduced Basis Method for Explicit Finite Volume Approximations of Nonlinear Conservation Laws , 2008 .
[52] A. Weinstein. Local structure of Poisson manifolds , 2021, Lectures on Poisson Geometry.
[53] Vladimir I. Arnold,et al. On the topology of three-dimensional steady flows of an ideal fluid , 1966 .
[54] P J Fox,et al. THE FOUNDATIONS OF MECHANICS. , 1918, Science.
[55] Albert Cohen,et al. Kolmogorov widths under holomorphic mappings , 2015, ArXiv.
[56] S. Lie. Theorie der Transformationsgruppen I , 1880 .