Structure-Preserving Reduced Basis Methods for Hamiltonian Systems with a Nonlinear Poisson Structure

We develop structure-preserving reduced basis methods for a large class of problems by resorting to their semi-discrete formulation as Hamiltonian dynamical systems. In this perspective, the phase space is naturally endowed with a Poisson manifold structure which encodes the physical properties, symmetries and conservation laws of the dynamics. We design reduced basis methods for the general case of nonlinear state-dependent degenerate Poisson structures based on a two-step approach. First, via a local approximation of the Poisson tensor we split the Hamiltonian dynamics into an “almost symplectic” part and the trivial evolution of the Casimir invariants. Second, canonically symplectic reduced basis techniques are applied to the nontrivial component of the dynamics, whereas the local Poisson tensor kernel is preserved exactly. The global Poisson structure and the conservation properties of the phase flow are retained by the reduced model in the constant-valued case and up to errors in the Poisson tensor approximation in the state-dependent case. The proposed reduction scheme is combined with a discrete empirical interpolation method (DEIM) to deal with nonlinear Hamiltonian functionals and ensure a computationally competitive reduced model. A priori error estimates for the solution of the reduced system are established. A set of numerical simulations is presented to corroborate the theoretical findings.

[1]  David Cohen,et al.  Linear energy-preserving integrators for Poisson systems , 2011 .

[2]  Danny C. Sorensen,et al.  A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction , 2012, SIAM J. Numer. Anal..

[3]  Jean-Frédéric Gerbeau,et al.  Approximated Lax pairs for the reduced order integration of nonlinear evolution equations , 2014, J. Comput. Phys..

[4]  Darboux's Theorem Fails for Weak Symplectic Forms , 1972 .

[5]  Ander Murua,et al.  An Algebraic Approach to Invariant Preserving Integators: The Case of Quadratic and Hamiltonian Invariants , 2006, Numerische Mathematik.

[6]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[7]  Jan S. Hesthaven,et al.  Structure Preserving Model Reduction of Parametric Hamiltonian Systems , 2017, SIAM J. Sci. Comput..

[8]  Rémi Abgrall,et al.  Robust model reduction by $$L^{1}$$L1-norm minimization and approximation via dictionaries: application to nonlinear hyperbolic problems , 2016, Adv. Model. Simul. Eng. Sci..

[9]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[10]  Bernard Haasdonk,et al.  A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space , 2011 .

[11]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[12]  Darboux' theorem for Hamiltonian differential operators , 1988 .

[13]  Danny C. Sorensen,et al.  A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical Systems , 2014, SIAM J. Sci. Comput..

[14]  L. Infeld,et al.  On the Quantization of the New Field Equations. I , 1934 .

[15]  Chi-Wang Shu,et al.  A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..

[16]  J. H. Brandts,et al.  Matlab code for sorting real Schur forms , 2002, Numer. Linear Algebra Appl..

[17]  A. Clebsch,et al.  Ueber die Integration der hydrodynamischen Gleichungen. , 1859 .

[18]  Jerrold E. Marsden,et al.  Hamiltonian systems with symmetry, coadjoint orbits and plasma physics , 1983 .

[19]  Julien Langou,et al.  Rounding error analysis of the classical Gram-Schmidt orthogonalization process , 2005, Numerische Mathematik.

[20]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .

[21]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[22]  P. Morrison,et al.  The Maxwell-Vlasov equations as a continuous hamiltonian system , 1980 .

[23]  J. Marsden,et al.  Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids , 1983 .

[24]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[25]  J. Marsden,et al.  Structure-preserving Model Reduction of Mechanical Systems , 2000 .

[26]  G. Quispel,et al.  Geometric Integration Methods that Preserve Lyapunov Functions , 2005 .

[27]  Youngsoo Choi,et al.  Conservative model reduction for finite-volume models , 2017, J. Comput. Phys..

[28]  B. Karasözen,et al.  Poisson integrators for Volterra lattice equations , 2005 .

[29]  J. Vanneste,et al.  Weakly nonlinear dynamics in noncanonical Hamiltonian systems with applications to fluids and plasmas , 2015, 1512.07230.

[30]  A. Weinstein Symplectic manifolds and their lagrangian submanifolds , 1971 .

[31]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[32]  U. Ascher,et al.  Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .

[33]  Fabio Nobile,et al.  Symplectic dynamical low rank approximation of wave equations with random parameters , 2020 .

[34]  T. H. Gronwall Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations , 1919 .

[35]  Paul T. Boggs,et al.  Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics , 2014, SIAM J. Sci. Comput..

[36]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[37]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Jerrold E. Marsden,et al.  Foundations of Mechanics, Second Edition , 1987 .

[39]  Mario Ohlberger,et al.  Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing , 2013 .

[40]  A. Kolmogoroff,et al.  Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .

[41]  G. Dahlquist Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .

[42]  G. Darboux Sur le problème de Pfaff , 1882 .

[43]  Ahmed Salam,et al.  On theoretical and numerical aspects of symplectic Gram–Schmidt-like algorithms , 2005, Numerical Algorithms.

[44]  A. Quarteroni,et al.  Reduced Basis Techniques For Nonlinear Conservation Laws , 2015 .

[45]  A. Patera,et al.  A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .

[46]  D. C. Youla,et al.  A Normal form for a Matrix under the Unitary Congruence Group , 1961, Canadian Journal of Mathematics.

[47]  Robert G. Littlejohn,et al.  A guiding center Hamiltonian: A new approach , 1979 .

[48]  Liqian Peng,et al.  Symplectic Model Reduction of Hamiltonian Systems , 2014, SIAM J. Sci. Comput..

[49]  H. Faßbender,et al.  Some observations on the Youla form and conjugate-normal matrices , 2007 .

[50]  Uri M. Ascher,et al.  On Symplectic and Multisymplectic Schemes for the KdV Equation , 2005, J. Sci. Comput..

[51]  Bernard Haasdonk,et al.  Reduced Basis Method for Explicit Finite Volume Approximations of Nonlinear Conservation Laws , 2008 .

[52]  A. Weinstein Local structure of Poisson manifolds , 2021, Lectures on Poisson Geometry.

[53]  Vladimir I. Arnold,et al.  On the topology of three-dimensional steady flows of an ideal fluid , 1966 .

[54]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[55]  Albert Cohen,et al.  Kolmogorov widths under holomorphic mappings , 2015, ArXiv.

[56]  S. Lie Theorie der Transformationsgruppen I , 1880 .