Dynamic Particle Swarm Optimization to Solve Multi-objective Optimization Problem

Abstract Multi-objective optimization problem is reaching better understanding of the properties and techniques of evolutionary algorithms. This paper presents the Dynamic Particle Swarm Optimization algorithm for solving multiobjective optimization problem. This Dynamic PSO is different from the existing PSO's and some local version of PSO in terms of swarm size, topology and search space. In this paper swarm size criteria for dynamic PSO is considered. Experiment conducted for standard benchmark functions of multi-objective optimization problem, which shows the better performance rather the basic PSO.

[1]  Thomas Stützle,et al.  Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[2]  Hui Wang,et al.  Opposition-based particle swarm algorithm with cauchy mutation , 2007, 2007 IEEE Congress on Evolutionary Computation.

[3]  Carlos A. Coello Coello,et al.  Ranking Methods for Many-Objective Optimization , 2009, MICAI.

[4]  Thomas Stützle,et al.  Heterogeneous particle swarm optimizers , 2009, 2009 IEEE Congress on Evolutionary Computation.

[5]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[6]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[7]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[8]  Shu-Kai S. Fan,et al.  A hybrid simplex search and particle swarm optimization for unconstrained optimization , 2007, Eur. J. Oper. Res..

[9]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[10]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[11]  M. A. Khanesar,et al.  A novel binary particle swarm optimization , 2007, 2007 Mediterranean Conference on Control & Automation.

[12]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[13]  Martin Middendorf,et al.  A hierarchical particle swarm optimizer and its adaptive variant , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Thomas Stützle,et al.  Convergence behavior of the fully informed particle swarm optimization algorithm , 2008, GECCO '08.

[15]  David W. Corne,et al.  Techniques for highly multiobjective optimisation: some nondominated points are better than others , 2007, GECCO '07.

[16]  Václav Snásel,et al.  On convergence of multi-objective Particle Swarm Optimizers , 2010, IEEE Congress on Evolutionary Computation.

[17]  Gary G. Yen,et al.  Dynamic Multiple Swarms in Multiobjective Particle Swarm Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[18]  Carlos A. Coello Coello,et al.  Effective ranking + speciation = Many-objective optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).