On the Algorithm for QRS Complexes Localisation in Electrocardiogram

Summary Varioustechniqueshavebeenutilizedincomputer/a ssisted� arrhythmiarecognitionforthemanagementofcardia cdisorders.� Toidentifyanyarrhythmiascharacteristics,�genera lly,�theQRS� complexistakenasareferencebecausetheimporta ntamplitude.� SeveralalgorithmsaredevelopedtolocalisetheR� peaks.�Most� physiologicsignaldetectionalgorithmsarebasedo npre/ processinganddecidingstagesifanincomingpeakisatrue� componentbasedonauserspecifiedthreshold.� Some � have� significantlylargeprocessingtimes.�Inthispaper ,�asimpleridea� isproposedanddevelopedtolocaliseefficiencyth eoccurrence� timeofRwaveofelectrocardiograms.�Theproposed� algorithm� treatsthedecisionstep.�Ourkeyideaistoequali zethemaximaof� thesignalandtoattenuatetheloweramplitudeof� PandT.�to� accomplishthetask,�weintroduceacharacteristic� functionwhich� actsessentiallyonthezoneofthethresholdactio n;�consequently,� theactivatedzonewherethethresholdoccursisen largedandthe�

[1]  Ivaylo I Christov,et al.  Real time electrocardiogram QRS detection using combined adaptive threshold , 2004, Biomedical engineering online.

[2]  W.J. Tompkins,et al.  ECG beat detection using filter banks , 1999, IEEE Transactions on Biomedical Engineering.

[3]  Paul S Addison,et al.  Wavelet transforms and the ECG: a review , 2005, Physiological measurement.

[4]  A. Antoniadis,et al.  High Accuracy of Automatic Detection of Atrial Fibrillation Using Wavelet Transform of Heart Rate Intervals , 2002, Pacing and clinical electrophysiology : PACE.

[5]  J. S. Sahambi,et al.  Using Wavelet Transforms for ECG Characterization , 1997 .

[6]  Stavros M. Panas,et al.  Performance of three QRS detection algorithms during sleep: a comparative study , 2001, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[7]  Carsten Meyer,et al.  Combining Algorithms in Automatic Detection of QRS Complexes in ECG Signals , 2006, IEEE Transactions on Information Technology in Biomedicine.

[8]  M. Hoher,et al.  De-noising of high-resolution ECG signals by combining the discrete wavelet transform with the Wiener filter , 1998, Computers in Cardiology 1998. Vol. 25 (Cat. No.98CH36292).

[9]  H. T. Nagle,et al.  A comparison of the noise sensitivity of nine QRS detection algorithms , 1990, IEEE Transactions on Biomedical Engineering.

[10]  K. Dejhan,et al.  Wavelet packet transform applications on QRS detection , 2004, Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004..

[11]  R. Orglmeister,et al.  The principles of software QRS detection , 2002, IEEE Engineering in Medicine and Biology Magazine.

[12]  G. Lyons,et al.  Bayesian ANN classifier for ECG arrhythmia diagnostic system: a comparison study , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[13]  S.N. Tandon,et al.  Using wavelet transforms for ECG characterization. An on-line digital signal processing system , 1997, IEEE Engineering in Medicine and Biology Magazine.

[14]  Willis J. Tompkins,et al.  A Real-Time QRS Detection Algorithm , 1985, IEEE Transactions on Biomedical Engineering.

[15]  Liang-Yu Shyu,et al.  Using wavelet transform and fuzzy neural network for VPC detection from the holter ECG , 2004, IEEE Transactions on Biomedical Engineering.

[16]  Willis J. Tompkins,et al.  Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database , 1986, IEEE Transactions on Biomedical Engineering.

[17]  P. Augustyniak Time-frequency modelling and discrimination of noise in the electrocardiogram. , 2003, Physiological measurement.

[18]  D. Kumar,et al.  of the 23 rd Annual EMBS International Conference , October 25-28 , Istanbul , Turkey Wavelets for QRS Detection , 2022 .

[19]  Pablo Laguna,et al.  A wavelet-based ECG delineator: evaluation on standard databases , 2004, IEEE Transactions on Biomedical Engineering.

[20]  José Carlos Teixeira de Barros Moraes,et al.  A QRS complex detection algorithm using electrocardiogram leads , 2002, Computers in Cardiology.

[21]  Natalia M. Arzeno,et al.  Quantitative Analysis of QRS Detection Algorithms Based on the First Derivative of the ECG , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.