Reduction of Second-Order Temperature Dependence of Silica-Based Athermal AWG by Using Two Resin-Filled Grooves
暂无分享,去创建一个
Shin Kamei | M Itoh | M. Itoh | S. Kamei | J. Kobayashi | K. Hirabayashi | N. Koshobu | K Hirabayashi | N Koshobu | J Kobayashi
[1] M. Itoh,et al. Ultra-small 40-channel athermal arrayed-waveguide grating module with low-loss groove design , 2008 .
[2] Y. Inoue,et al. Athermal silica-based arrayed-waveguide grating multiplexer , 1997 .
[3] Gorachand Ghosh,et al. Handbook of thermo-optic coefficients of optical materials with applications , 1998 .
[4] Hiroshi Ishikawa,et al. Super-high-Δ athermal arrayed waveguide grating with resin-filled trenches in slab region , 2004 .
[5] S. Kamei,et al. Compensation for Second-Order Temperature Dependence in Athermal Arrayed-Waveguide Grating Realizing Wide Temperature Range Operation , 2009, IEEE Photonics Technology Letters.
[6] Kazuhisa Kashihara,et al. 100 GHz-32 ch athermal AWG with extremely low temperature dependency of center wavelength , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..
[7] S. Kamei,et al. 50-GHz-Spacing Athermal Mach–Zehnder Interferometer-Synchronized Arrayed-Waveguide Grating With Improved Temperature Insensitivity , 2009, IEEE Photonics Technology Letters.