Superactivation of monogamy relations for nonadditive quantum correlation measures

We investigate the general monogamy and polygamy relations satisfied by quantum correlation measures. We show that there exist two real numbers $\alpha$ and $\beta$ such that for any quantum correlation measure $Q$, $Q^x$ is monogamous if $x\geq \alpha$ and polygamous if $0\leq x\leq \beta$ for a given multipartite state $\rho$. For $\beta <x<\alpha$, we show that the monogamy relation can be superactivated by finite $m$ copies $\rho^{\otimes m}$ of $\rho$ for nonadditive correlation measures. As a detailed example, we use the negativity as the quantum correlation measure to illustrate such superactivation of monogamy properties. A tighter monogamy relation is presented at last.

[1]  A. Zeilinger,et al.  Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems , 2010, 1008.4116.

[2]  Jeong San Kim,et al.  Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity , 2008, 0811.2047.

[3]  Yong-Cheng Ou,et al.  Violation of monogamy inequality for higher-dimensional objects , 2006, quant-ph/0612127.

[4]  Gilad Gour,et al.  Monogamy of entanglement without inequalities , 2017, Quantum.

[5]  Chang-shui Yu,et al.  Entanglement monogamy of tripartite quantum states , 2008, 0803.2954.

[6]  Xue-Na Zhu,et al.  Entanglement Monogamy Relations of Qubit Systems , 2014, 1409.1022.

[7]  V. Scarani,et al.  Quantum cloning , 2005, quant-ph/0511088.

[8]  Yu Guo Any entanglement of assistance is polygamous , 2018, Quantum Inf. Process..

[9]  Jeong San Kim,et al.  Polygamy of distributed entanglement , 2009, 0903.4413.

[10]  Carlos Palazuelos,et al.  Superactivation of quantum nonlocality. , 2012, Physical review letters.

[11]  Arun Kumar Pati,et al.  Monogamy, Polygamy and other Properties of Entanglement of Purification , 2015, ArXiv.

[12]  Wei Jiang,et al.  Entanglement monogamy inequality in a 2 ⊗ 2 ⊗ 4 system , 2010 .

[13]  H. Breuer Optimal entanglement criterion for mixed quantum states. , 2006, Physical review letters.

[14]  Marcin Pawlowski,et al.  Security proof for cryptographic protocols based only on the monogamy of Bell's inequality violations , 2009, 0907.3778.

[15]  M. Kus,et al.  Concurrence of mixed bipartite quantum states in arbitrary dimensions. , 2004, Physical review letters.

[16]  Barry C. Sanders,et al.  Duality for monogamy of entanglement , 2006, quant-ph/0606168.

[17]  Jeong San Kim Weighted polygamy inequalities of multiparty entanglement in arbitrary-dimensional quantum systems , 2018, 1802.00336.

[18]  J. Polchinski,et al.  Black holes: complementarity or firewalls? , 2012, Journal of High Energy Physics.

[19]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[20]  F. Verstraete,et al.  General monogamy inequality for bipartite qubit entanglement. , 2005, Physical review letters.

[21]  Shao-Ming Fei,et al.  Tighter entanglement monogamy relations of qubit systems , 2017, Quantum Information Processing.

[22]  H. Fan,et al.  Monogamy inequality in terms of negativity for three-qubit states , 2007, quant-ph/0702127.

[23]  Jun Li,et al.  Tighter monogamy relations in multiqubit systems , 2018, 1803.11355.

[24]  Ming-Yong Ye,et al.  Entanglement monogamy and entanglement evolution in multipartite systems , 2009, 0906.0430.

[25]  W. M. Liu,et al.  Bound of entanglement of assistance and monogamy constraints , 2009, 0904.2809.

[26]  Heinz-Peter Breuer Separability criteria and bounds for entanglement measures , 2006 .

[27]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[28]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[29]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[30]  Markus Grassl,et al.  Generalized decoding, effective channels, and simplified security proofs in quantum key distribution , 2006 .

[31]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[32]  Xianqing Li-Jost,et al.  Improved monogamy relations with concurrence of assistance and negativity of assistance for multiqubit W-class states , 2018, Quantum Inf. Process..

[33]  Julio I. de Vicente,et al.  Lower bounds on concurrence and separability conditions , 2006, quant-ph/0611229.

[34]  Shao-Ming Fei,et al.  Tighter monogamy relations of quantum entanglement for multiqubit W-class states , 2017, Quantum Inf. Process..

[35]  Guang-Can Guo,et al.  Optimal entanglement witnesses based on local orthogonal observables , 2007, 0705.1832.

[36]  Joonwoo Bae,et al.  Asymptotic quantum cloning is state estimation. , 2006, Physical review letters.

[37]  A. Winter,et al.  Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.

[38]  Debasis Sarkar,et al.  Strong monogamy conjecture in a four-qubit system , 2015, 1512.06816.

[39]  Asutosh Kumar A Unified Approach Towards Monogamy of Quantum Correlations , 2014 .

[40]  Jeong San Kim Negativity and tight constraints of multiqubit entanglement , 2018 .

[41]  Yu Guo,et al.  Multipartite unextendible entangled basis , 2015, Quantum Information Processing.

[42]  Yongming Li,et al.  Monogamy of αth power entanglement measurement in qubit systems , 2015, 1504.08169.

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  Shengjun Wu,et al.  Entangled bases with fixed Schmidt number , 2015 .

[45]  Jeong San Kim General polygamy inequality of multiparty quantum entanglement , 2012, 1202.2184.

[46]  Zhenghan Wang,et al.  General monogamy relation for the entanglement of formation in multiqubit systems. , 2014, Physical review letters.

[47]  S. Fei,et al.  Concurrence of arbitrary dimensional bipartite quantum states. , 2005, Physical review letters.

[48]  Lluis Masanes,et al.  Universally-composable privacy amplification from causality constraints , 2008, Physical review letters.