A note on the Hamilton-Waterloo problem with C8-factors and Cm-factors

Abstract In this paper, we almost completely solve the Hamilton–Waterloo problem with C 8 -factors and C m -factors where the number of vertices is a multiple of 8 m .

[1]  Alan Hartman,et al.  Resolvable group divisible designs with block size 3 , 1989, Discret. Math..

[2]  Alexander Rosa,et al.  The Hamilton-Waterloo problem: the case of Hamilton cycles and triangle-factors , 2004, Discret. Math..

[3]  Hung-Lin Fu,et al.  The Hamilton–Waterloo Problem for Triangle-Factors and Heptagon-Factors , 2016, Graphs Comb..

[4]  John Asplund,et al.  On the Hamilton-Waterloo problem with triangle factors and C3x-factors , 2015, Australas. J Comb..

[5]  Douglas R. Stinson,et al.  The Oberwolfach problem and factors of uniform odd length cycles , 1989, J. Comb. Theory, Ser. A.

[6]  Alan C. H. Ling,et al.  The Hamilton—Waterloo problem: The case of triangle‐factors and one Hamilton cycle , 2009 .

[7]  Don R. Lick,et al.  On λ-Fold Equipartite Oberwolfach Problem with Uniform Table Sizes , 2003 .

[8]  Ziqiang Zhu,et al.  The existence of C4-bundle-sheath-like photosynthesis in the mid-vein of C3 rice , 2016, Rice.

[9]  Melissa S. Keranen,et al.  The Hamilton-Waterloo Problem with 4-Cycles and a Single Factor of n-Cycles , 2013, Graphs Comb..

[10]  Jiuqiang Liu,et al.  The equipartite Oberwolfach problem with uniform tables , 2003, J. Comb. Theory, Ser. A.

[11]  Marco Buratti,et al.  On sharply vertex transitive 2-factorizations of the complete graph , 2005, J. Comb. Theory, Ser. A.

[12]  H. Cao,et al.  Further results on the Hamilton-Waterloo problem , 2016, 1605.00818.

[13]  Melissa S. Keranen,et al.  A Generalization of the Hamilton–Waterloo Problem on Complete Equipartite Graphs , 2016, 1605.01781.

[14]  W. L. Piotrowski,et al.  The solution of the bipartite analogue of the Oberwolfach problem , 1991, Discret. Math..

[15]  Peter Adams,et al.  On the Hamilton-Waterloo Problem , 2002, Graphs Comb..

[16]  Darryn Bryant,et al.  On the Hamilton‐Waterloo Problem for Bipartite 2‐Factors , 2013 .

[17]  Sibel Ozkan,et al.  The Hamilton-Waterloo Problem with C4 and Cm factors , 2015, Discret. Math..

[18]  David C. Kamin The Hamilton-Waterloo problem with triangle and C9 factors , 2011 .

[19]  Jiuqiang Liu,et al.  A generalization of the Oberwolfach problem andCt-factorizations of complete equipartite graphs , 2000 .

[20]  Hongchuan Lei,et al.  The Hamilton‐Waterloo problem for Hamilton cycles and triangle‐factors , 2012 .

[21]  Simona Bonvicini,et al.  Octahedral, dicyclic and special linear solutions of some Hamilton-Waterloo problems , 2017, Ars Math. Contemp..

[22]  Hao Shen,et al.  The Hamilton-Waterloo problem for Hamilton cycles and C4k-factors , 2011, Ars Comb..

[23]  Hung-Lin Fu,et al.  THE HAMILTON-WATERLOO PROBLEM FOR TWO EVEN CYCLES FACTORS , 2008 .

[24]  Dean G. Hoffman,et al.  The existence of Ck-factorizations of K2n-F , 1991, Discret. Math..

[25]  Haitao Cao,et al.  On the existence of cycle frames and almost resolvable cycle systems , 2011, Discret. Math..

[26]  Brett Stevens,et al.  The Hamilton–Waterloo problem for cycle sizes 3 and 4 , 2009 .

[27]  D. West Introduction to Graph Theory , 1995 .

[28]  Darryn E. Bryant,et al.  On bipartite 2‐factorizations of kn − I and the Oberwolfach problem , 2011, J. Graph Theory.

[29]  Tommaso Traetta,et al.  Infinitely many cyclic solutions to the Hamilton-Waterloo problem with odd length cycles , 2015, Discret. Math..

[30]  P. Danziger,et al.  On the Hamilton–Waterloo Problem with Odd Orders , 2015, 1510.07079.

[31]  Alan C. H. Ling,et al.  The Hamilton-Waterloo problem with triangle-factors and Hamilton cycles: The case n 3 (mod 18) , 2008 .

[32]  Li Wang,et al.  The Hamilton–Waterloo Problem for C3 ‐Factors and Cn ‐Factors , 2016, 1609.00453.

[33]  Rolf S. Rees,et al.  Two new direct product-type constructions for resolvable group-divisible designs , 1993 .

[34]  Marco Buratti,et al.  A Cyclic Solution for an Infinite Class of Hamilton–Waterloo Problems , 2016, Graphs Comb..