An optimal bivariate Poisson field chart for controlling high-quality manufacturing processes

Shewhart C-chart is a widely accepted control chart for monitoring number of defects in a given process. This chart is based on normal approximations. Normal assumption is, however, impractical in many cases especially for count data. This assumption becomes stronger when correlation between characteristics exists. In this article, we propose an optimal bivariate Poisson field chart to monitor two correlated characteristics of count data for both industrial and non-industrial purposes. Our chart is based on optimization of bivariate Poisson confidence interval and projection of bivariate Poisson data in Poisson field. The performance of our proposed algorithm is presented using both real case study and simulations. The experimental results demonstrate improved performances regarding visualization and false alarm rate.

[1]  C D Kemp,et al.  Some properties of the 'hermite' distribution. , 1965, Biometrika.

[2]  Charles P. Quesenberry,et al.  SPC Q charts for a Poisson parameter (lambda): Short or long runs , 1991 .

[3]  M. E. Welch,et al.  Bivariate Discrete Distributions , 1993 .

[4]  Thong Ngee Goh,et al.  CONTROL CHART FOR MULTIVARIATE ATTRIBUTE PROCESSES , 1998 .

[5]  Lloyd S. Nelson,et al.  A Control Chart for Parts-Per-Million Nonconforming Items , 1994 .

[6]  Babak Abbasi,et al.  On the monitoring of multi-attributes high-quality production processes , 2007 .

[7]  Thong Ngee Goh,et al.  Some procedures for decision making in controlling high yield processes , 1992 .

[8]  Douglas C. Montgomery,et al.  A review of multivariate control charts , 1995 .

[9]  H. I. Patel QUALITY CONTROL METHODS FOR MULTIVARIATE BINOMIAL AND POISSON DISTRIBUTIONS , 1973 .

[10]  Thong Ngee Goh,et al.  On Control Charts Based on the Generalized Poisson Model , 2006 .

[11]  P. Holgate Estimation for the bivariate Poisson distribution , 1964 .

[12]  Neil C. Schwertman,et al.  OPTIMAL LIMITS FOR ATTRIBUTES CONTROL CHARTS , 1997 .

[13]  J. Chiu,et al.  Attribute Control Chart for Multivariate Poisson Distribution , 2007 .

[14]  S. Kocherlakota,et al.  Bivariate discrete distributions , 1992 .

[15]  Dan Keun Sung,et al.  Reliability and Performance Analysis of Time-Space-Time Swiching Networks with Multiple Separated Space Switches , 1991 .

[16]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[17]  M. A. Hamdan,et al.  Estimation and Testing for the Parameters of the Bivariate Poisson Population Based on a 2 × 2 Sample@@@Estimation and Testing for the Parameters of the Bivariate Poisson Population Based on a 2 X 2 Sample , 1993 .

[18]  Neil C. Schwertman,et al.  IMPLEMENTING OPTIMAL ATTRIBUTES CONTROL CHARTS , 1997 .

[19]  D. Karlis,et al.  Bivariate Poisson and Diagonal Inflated Bivariate Poisson Regression Models in R , 2005 .

[20]  Minitab Statistical Methods for Quality Improvement , 2001 .

[21]  Galit Shmueli,et al.  An Elegant Method for Generating Multivariate Poisson Random Variables , 2007 .

[22]  Tzong-Ru Tsai,et al.  ALTERNATIVE ATTRIBUTE CONTROL CHARTS BASED ON IMPROVED SQUARE ROOT TRANSFORMATION , 2006 .

[23]  James C. Benneyan,et al.  Statistical Control Charts Based on a Geometric Distribution , 1992 .

[24]  J. T. Campbell,et al.  The Poisson Correlation Function , 1934 .

[25]  Stelios Psarakis,et al.  Multivariate statistical process control charts: an overview , 2007, Qual. Reliab. Eng. Int..

[26]  Douglas C. Montgomery,et al.  Process monitoring for multiple count data using generalized linear model-based control charts , 2003 .

[27]  Alan Winterbottom,et al.  Simple adjustments to improve control limits on attribute charts , 1993 .

[28]  Rudolf G. Kittlitz Calculating the (Almost) Exact Control Limits for a C-Chart , 2006 .

[29]  Kazutomo Kawamura,et al.  Direct calculation of maximum likelihood estimator for the bivariate Poisson distribution , 1984 .

[30]  Thong Ngee Goh,et al.  Spc of a near zero-defect process subject to random shocks , 1993 .

[31]  Robert C. Griffiths,et al.  ASPECTS OF CORRELATION IN BIVARIATE POISSON DISTRIBUTIONS AND PROCESSES , 1979 .