REVERSIBILITY CONDITIONS FOR QUANTUM OPERATIONS

We give a list of equivalent conditions for reversibility of the adjoint of a unital Schwarz map, with respect to a set of quantum states. A large class of such conditions is given by preservation of distinguishability measures: F-divergences, L1-distance, quantum Chernoff and Hoeffding distances. Here we summarize and extend the known results. Moreover, we prove a number of conditions in terms of the properties of a quantum Radon–Nikodym derivative and factorization of states in the given set. Finally, we show that reversibility is equivalent to preservation of a large class of quantum Fisher informations and χ2-divergences.

[1]  C. Helstrom Quantum detection and estimation theory , 1969 .

[2]  Masamichi Takesaki,et al.  Conditional Expectations in von Neumann Algebras , 1972 .

[3]  E. Lieb,et al.  Some operator inequalities of the schwarz type , 1974 .

[4]  A. S. Kholevo On Asymptotically Optimal Hypothesis Testing in Quantum Statistics , 1979 .

[5]  Luigi Accardi,et al.  Conditional expectations in von Neumann algebras and a theorem of Takesaki , 1982 .

[6]  A DUAL IN VON NEUMANN ALGEBRAS WITH WEIGHTS , 1984 .

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  James V. Bondar,et al.  Mathematical theory of statistics , 1985 .

[9]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[10]  D. Petz Sufficient subalgebras and the relative entropy of states of a von Neumann algebra , 1986 .

[11]  H. Strasser Mathematical Theory of Statistics: Statistical Experiments and Asymptotic Decision Theory , 1986 .

[12]  D. Petz SUFFICIENCY OF CHANNELS OVER VON NEUMANN ALGEBRAS , 1988 .

[13]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[14]  D. Petz Monotone metrics on matrix spaces , 1996 .

[15]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[16]  Denes Petz,et al.  Structure of Sufficient Quantum Coarse-Grainings , 2004 .

[17]  A. Winter,et al.  Communications in Mathematical Physics Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality , 2022 .

[18]  林 正人 Quantum information : an introduction , 2006 .

[19]  D. Petz,et al.  Sufficiency in quantum statistical inference. A survey with examples , 2006, quant-ph/0604091.

[20]  D. Petz,et al.  Sufficiency in Quantum Statistical Inference , 2004, math-ph/0412093.

[22]  R. Bhatia Positive Definite Matrices , 2007 .

[23]  Masahito Hayashi Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding , 2006, quant-ph/0611013.

[24]  F. Hiai,et al.  Error exponents in hypothesis testing for correlated states on a spin chain , 2007, 0707.2020.

[25]  M. Nussbaum,et al.  Asymptotic Error Rates in Quantum Hypothesis Testing , 2007, Communications in Mathematical Physics.

[26]  A. Jenčová The structure of strongly additive states and Markov triplets on the CAR algebra , 2010, 1008.0982.

[27]  F. Hiai,et al.  Quantum f-divergences and error correction , 2010, 1008.2529.

[28]  Animesh Datta,et al.  A Condition for the Nullity of Quantum Discord , 2010, 1003.5256.

[29]  F. Verstraete,et al.  The χ2-divergence and mixing times of quantum Markov processes , 2010, 1005.2358.

[30]  D. Poulin,et al.  Information-preserving structures: A general framework for quantum zero-error information , 2010, 1006.1358.

[31]  M. Ruskai,et al.  A UNIFIED TREATMENT OF CONVEXITY OF RELATIVE ENTROPY AND RELATED TRACE FUNCTIONS, WITH CONDITIONS FOR EQUALITY , 2009, 0903.2895.

[32]  A. Jenčová,et al.  Quantum Hypothesis Testing and Sufficient Subalgebras , 2008, 0810.4045.

[33]  D. Petz,et al.  Markov triplets on CCR-algebras , 2008, Acta Scientiarum Mathematicarum.

[34]  On strict decrease of the Holevo quantity , 2011 .

[35]  M. Shirokov Monotonicity of the Holevo quantity: a necessary condition for equality in terms of a channel and its applications , 2011, 1106.3297.