The role of diffusion in broadband infrared absorption in chalcogen-doped silicon

Sulfur doping of silicon beyond the solubility limit by femtosecond laser irradiation leads to near-unity broadband absorption of visible and infrared light and the realization of silicon-based infrared photodetectors. The nature of the infrared absorption is not yet well understood. Here we present a study on the reduction of infrared absorptance after various anneals of different temperatures and durations for three chalcogens (sulfur, selenium, and tellurium) dissolved into silicon by femtosecond laser irradiation. For sulfur doping, we irradiate silicon in SF6 gas; for selenium and tellurium, we evaporate a film onto the silicon and irradiate in N2 gas; lastly, as a control, we irradiated untreated silicon in N2 gas. Our analysis shows that the deactivation of infrared absorption after thermal annealing is likely caused by dopant diffusion. We observe that a characteristic diffusion length—common to all three dopants—leads to the reduction of infrared absorption. Using diffusion theory, we suggest a model in which grain size of the resolidified surface layer can account for this characteristic diffusion length, indicating that deactivation of infrared absorptance may be caused by precipitation of the dopant at the grain boundaries.

[1]  Mengyan Shen,et al.  Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. , 2005, Optics letters.

[2]  H. Mehrer,et al.  Diffusion of tellurium in silicon studied by the redistribution of an implanted source of radioactive 121Te , 1993 .

[3]  R. Hall,et al.  Sulfur in silicon , 1959 .

[4]  H. Mehrer,et al.  Diffusion of sulfur‐35 into silicon using an elemental vapor source , 1993 .

[5]  E. Mazur,et al.  Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses , 2001, CLEO 2001.

[6]  M. Aziz,et al.  Strong Sub-band-gap Infrared Absorption in Silicon Supersaturated with Sulfur , 2006 .

[7]  D. Hall,et al.  Optical emission at 1.32 μm from sulfur‐doped crystalline silicon , 1986 .

[8]  A. Taskin,et al.  Special features of spatial redistribution of selenium atoms implanted in silicon , 2000 .

[9]  S. U. Campisano,et al.  Solute trapping by moving interface in ion‐implanted silicon , 1980 .

[10]  R. Wilson Depth distributions of sulfur implanted into silicon as a function of ion energy, ion fluence, and anneal temperature , 1984 .

[11]  Michael O. Thompson,et al.  Complete experimental test of kinetic models for rapid alloy solidification , 2000 .

[12]  Federico Capasso,et al.  Point defect engineered Si sub-bandgap light-emitting diode. , 2007, Optics express.

[13]  J. Mimkes,et al.  Diffusion of selenium and tellurium in silicon , 1988 .

[14]  E. Janzén,et al.  Chemical identification of deep energy levels in Si:Se , 1980 .

[15]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[16]  E. Mazur,et al.  Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation , 2004 .

[17]  Eric Mazur,et al.  Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas , 2006 .

[18]  Michael J. Aziz,et al.  Model for solute redistribution during rapid solidification , 1982 .

[19]  Klaus Sokolowski-Tinten,et al.  The physical mechanisms of short-pulse laser ablation , 2000 .

[20]  F. A. Kröger,et al.  Defect pairing diffusion, and solubility studies in selenium‐doped silicon , 1978 .

[21]  K. Iyakutti,et al.  Electronic Structure of Chalcogen Impurities in Silicon , 1998 .

[22]  M. Kleverman,et al.  A photoluminescence study of selenium-diffused silicon , 1999 .

[23]  E. Janzén,et al.  Tellurium donors in silicon , 1981 .

[24]  Tsao,et al.  Solute trapping: Comparison of theory with experiment. , 1986, Physical review letters.

[25]  Eric Mazur,et al.  Role of the Background Gas in the Morphology and Optical Properties of Laser-Microstructured Silicon , 2005 .

[26]  A. Henry,et al.  New photoluminescence lines in selenium-doped silicon , 1989 .

[27]  Eric Mazur,et al.  Silicon Surface Morphologies after Femtosecond Laser Irradiation , 2006 .

[28]  M. Sakata,et al.  Diffusion Coefficient of Selenium in Silicon by Sheet Hall Coefficient Measurements , 1979 .

[29]  E. Janzén,et al.  High-resolution studies of sulfur- and selenium-related donor centers in silicon , 1984 .

[30]  S. R. Wilson,et al.  Supersaturated substitutional alloys formed by ion implantation and pulsed laser annealing of group-III and group-V dopants in silicon , 1980 .

[31]  E. Janzén,et al.  Diffusion of tellurium dopant in silicon , 1982 .

[32]  D. Hall,et al.  Concentration dependence of optical emission from sulfur‐doped crystalline silicon , 1987 .

[33]  N. Sclar The effect of dopant diffusion vapor pressure on the properties of sulfur and selenium doped silicon infrared detectors , 1981 .

[34]  Eric Mazur,et al.  Chalcogen doping of silicon via intense femtosecond-laser irradiation , 2007 .

[35]  Y. Astrov,et al.  Silicon Doped with Sulfur as a Detector Material for High Speed Infrared Image Converters , 2005 .

[36]  T. Glover,et al.  Hydrodynamics of particle formation following femtosecond laser ablation , 2003 .