Effect of Surface Roughness on the Properties of Titanium Materials for Bone Implants

[1]  V. Kuryavyi,et al.  Tantalum-Containing Bioactive Glass-Ceramics: A Mechanism of Suppression of the Biological Activity of the 45S5 Bioglass by Doping with Ta2O5 , 2020, Russian Journal of Inorganic Chemistry.

[2]  Yong Han,et al.  Hydrothermally grown TiO2-nanorods on surface mechanical attrition treated Ti: improved corrosion fatigue and osteogenesis. , 2020, Acta biomaterialia.

[3]  I. Buravlev,et al.  Reactive Spark Plasma Synthesis of Porous Bioceramic Wollastonite , 2020, Russian Journal of Inorganic Chemistry.

[4]  Chetan,et al.  Bioactive coating as a surface modification technique for biocompatible metallic implants: a review , 2019, Journal of Asian Ceramic Societies.

[5]  C. Aparicio,et al.  Nano-scale modification of titanium implant surfaces to enhance osseointegration. , 2019, Acta biomaterialia.

[6]  K. Ou,et al.  Repositioning Titanium: An In Vitro Evaluation of Laser-Generated Microporous, Microrough Titanium Templates As a Potential Bridging Interface for Enhanced Osseointegration and Durability of Implants , 2017, Front. Bioeng. Biotechnol..

[7]  Richard C. Svrluga,et al.  Impact of gas cluster ion and accelerated neutral atom beam surface treatments on the laser-induced damage threshold of ceramic Yb:YAG , 2017 .

[8]  F. Tarlochan,et al.  Corrosion and surface modification on biocompatible metals: A review. , 2017, Materials science & engineering. C, Materials for biological applications.

[9]  L. Rasmusson,et al.  The influence of controlled surface nanotopography on the early biological events of osseointegration. , 2017, Acta biomaterialia.

[10]  A. E. Ieshkin,et al.  Computer simulation and visualization of supersonic jet for gas cluster equipment , 2015 .

[11]  Yu Zhang,et al.  Promoting Bone Mesenchymal Stem Cells and Inhibiting Bacterial Adhesion of Acid-Etched Nanostructured Titanium by Ultraviolet Functionalization , 2015 .

[12]  I. Yamada,et al.  Progress and applications of cluster ion beam technology , 2015 .

[13]  Shifang Zhao,et al.  The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability , 2014, Scientific Reports.

[14]  B. Boyan,et al.  A review on the wettability of dental implant surfaces II: Biological and clinical aspects. , 2014, Acta biomaterialia.

[15]  B. Chrcanovic,et al.  Study of the influence of acid etching treatments on the superficial characteristics of Ti , 2014 .

[16]  Joseph Khoury,et al.  Investigation of accelerated neutral atom beams created from gas cluster ion beams , 2013 .

[17]  M. Herrero-Climent,et al.  Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: in vitro and in vivo studies , 2013, Journal of Materials Science: Materials in Medicine.

[18]  J. Reseland,et al.  Enhanced in vitro osteoblast differentiation on TiO2 scaffold coated with alginate hydrogel containing simvastatin , 2013, Journal of tissue engineering.

[19]  M. Morra,et al.  Gene expression of markers of osteogenic differentiation of human mesenchymal cells on collagen I-modified microrough titanium surfaces. , 2011, Journal of biomedical materials research. Part A.

[20]  F Rupp,et al.  High surface energy enhances cell response to titanium substrate microstructure. , 2005, Journal of biomedical materials research. Part A.

[21]  P. Chu,et al.  Surface modification of titanium, titanium alloys, and related materials for biomedical applications , 2004 .

[22]  Thomas J Webster,et al.  Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. , 2004, Biomaterials.

[23]  G. Thouas,et al.  Metallic implant biomaterials , 2015 .

[24]  Thomas Jay Webster,et al.  Nanomedicine for implants: a review of studies and necessary experimental tools. , 2007, Biomaterials.

[25]  Mark J. Jackson,et al.  Review: titanium and titanium alloy applications in medicine , 2007 .