QoS for 5G Mobile Services Based on Intelligent Multi-access Edge Computing

[1]  Jonathan Rodriguez Fundamentals of 5G Mobile Networks: Rodriguez/Fundamentals of 5G Mobile Networks , 2015 .

[2]  Toni Janevski,et al.  5G mobile terminals with advanced QoS-based user-centric aggregation (AQUA) for heterogeneous wireless and mobile networks , 2015, Wireless Networks.

[3]  Toni Janevski,et al.  5G and the Fog — Survey of related technologies and research directions , 2016, 2016 18th Mediterranean Electrotechnical Conference (MELECON).

[4]  Toni Janevski QoS for Fixed and Mobile Ultra-Broadband , 2019 .

[5]  Toni Janevski,et al.  Advanced QoS-Based User-Centric Aggregation (AQUA) for 5G Mobile Terminals in Heterogeneous Wireless and Mobile Networks , 2015, FABULOUS.

[6]  M. Rahman,et al.  Fourth generation (4G) mobile networks - features, technologies & issues , 2005 .

[7]  Toni Janevski,et al.  Design for 5G Mobile Network Architecture , 2011, Int. J. Commun. Networks Inf. Secur..

[8]  Erik Wilde,et al.  From the Internet of Things to the Web of Things: Resource-oriented Architecture and Best Practices , 2011, Architecting the Internet of Things.

[9]  Toni Janevski,et al.  Fog Computing Service Orchestration Mechanisms for 5G Networks , 2018 .

[10]  Toni Janevski,et al.  Lyapunov Optimization Framework for 5G Mobile Nodes With Multi-Homing , 2016, IEEE Communications Letters.

[11]  Rajkumar Buyya,et al.  Management and Orchestration of Network Slices in 5G, Fog, Edge and Clouds , 2018, Fog and Edge Computing.

[12]  Tarik Taleb,et al.  End-to-end Network Slicing for 5G Mobile Networks , 2017, J. Inf. Process..

[13]  Toni Janevski 5G Mobile Phone Concept , 2009, 2009 6th IEEE Consumer Communications and Networking Conference.

[14]  Jeffrey G. Andrews,et al.  What Will 5G Be? , 2014, IEEE Journal on Selected Areas in Communications.

[15]  Jorge M. Pereira Fourth generation: now, it is personal! , 2000, 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC 2000. Proceedings (Cat. No.00TH8525).

[16]  Xin Li,et al.  Network Slicing for 5G: Challenges and Opportunities , 2017, IEEE Internet Computing.

[17]  Robert W. Heath,et al.  Five disruptive technology directions for 5G , 2013, IEEE Communications Magazine.

[18]  B. Bangerter,et al.  Networks and devices for the 5G era , 2014, IEEE Communications Magazine.

[19]  Andrea Francini,et al.  A Cloud-Native Approach to 5G Network Slicing , 2017, IEEE Communications Magazine.

[20]  Leandros Tassiulas,et al.  Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks , 1992 .

[21]  Willie W. Lu An open baseband processing architecture for future mobile terminal design , 2008, IEEE Wireless Communications.

[22]  Mahesh K. Marina,et al.  Network Slicing in 5G: Survey and Challenges , 2017, IEEE Communications Magazine.

[23]  Eytan Modiano,et al.  Dynamic power allocation and routing for time-varying wireless networks , 2005 .

[24]  Xiqi Gao,et al.  Cellular architecture and key technologies for 5G wireless communication networks , 2014, IEEE Communications Magazine.

[25]  Junyi Li,et al.  Network densification: the dominant theme for wireless evolution into 5G , 2014, IEEE Communications Magazine.

[26]  Josef Noll,et al.  5G: Service Continuity in Heterogeneous Environments , 2011, Wirel. Pers. Commun..

[27]  Toni Janevski,et al.  Advanced QoS Provisioning and Mobile Fog Computing for 5G , 2018, Wirel. Commun. Mob. Comput..

[28]  Toni Janevski,et al.  Radio Network Aggregation for 5G Mobile Terminals in Heterogeneous Wireless and Mobile Networks , 2014, Wirel. Pers. Commun..