Behavior-based malware detection system for the Android platform

Malware in smartphones is growing at a significant rate. There are currently more than 250 million smartphone users in the world and this number is expected to grow in coming years.  In the past fe ...

[1]  Christopher Krügel,et al.  A survey on automated dynamic malware-analysis techniques and tools , 2012, CSUR.

[2]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[3]  Songwu Lu,et al.  SmartSiren: virus detection and alert for smartphones , 2007, MobiSys '07.

[4]  Sahin Albayrak,et al.  An Android Application Sandbox system for suspicious software detection , 2010, 2010 5th International Conference on Malicious and Unwanted Software.

[5]  Alon Y. Halevy,et al.  Crowdsourcing systems on the World-Wide Web , 2011, Commun. ACM.

[6]  Yuval Elovici,et al.  Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey , 2009, Inf. Secur. Tech. Rep..

[7]  Roberto Uribeetxeberria,et al.  A data mining approach for analysis of worm activity through automatic signature generation , 2008, AISec '08.

[8]  Joseph G. Tront,et al.  Mobile Device Profiling and Intrusion Detection Using Smart Batteries , 2008, Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008).

[9]  Sahin Albayrak,et al.  Enhancing security of linux-based android devices , 2008 .

[10]  Simin Nadjm-Tehrani,et al.  Crowdroid: behavior-based malware detection system for Android , 2011, SPSM '11.

[11]  Sahin Albayrak,et al.  Static Analysis of Executables for Collaborative Malware Detection on Android , 2009, 2009 IEEE International Conference on Communications.

[12]  Ted S. Sindlinger,et al.  Crowdsourcing: Why the Power of the Crowd is Driving the Future of Business , 2010 .

[13]  Tom Martin,et al.  Mobile phones as computing devices: the viruses are coming! , 2004, IEEE Pervasive Computing.

[14]  Herbert Bos,et al.  Paranoid Android : Zero-Day Protection for Smartphones Using the Cloud , 2010 .

[15]  Sahin Albayrak,et al.  Detecting Symbian OS malware through static function call analysis , 2009, 2009 4th International Conference on Malicious and Unwanted Software (MALWARE).

[16]  Grant A. Jacoby,et al.  Battery-based intrusion detection , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[17]  Kang G. Shin,et al.  Behavioral detection of malware on mobile handsets , 2008, MobiSys '08.

[18]  Christian Bauckhage,et al.  Malware Detection on Mobile Devices Using Distributed Machine Learning , 2010, 2010 20th International Conference on Pattern Recognition.

[19]  Sahin Albayrak,et al.  Monitoring Smartphones for Anomaly Detection , 2008, Mob. Networks Appl..

[20]  Herbert Bos,et al.  Paranoid Android: versatile protection for smartphones , 2010, ACSAC '10.

[21]  Aditya P. Mathur,et al.  A Survey of Malware Detection Techniques , 2007 .

[22]  Jan A. Bergstra,et al.  Register-machine based processes , 2001, JACM.

[23]  Yuval Elovici,et al.  Intrusion detection for mobile devices using the knowledge-based, temporal abstraction method , 2010, J. Syst. Softw..