New aspects of renal potassium transport

[1]  G. Giebisch,et al.  Role of luminal anion and pH in distal tubule potassium secretion. , 2003, American journal of physiology. Renal physiology.

[2]  G. Giebisch,et al.  Protein Kinase C (PKC)-induced Phosphorylation of ROMK1 Is Essential for the Surface Expression of ROMK1 Channels* , 2002, The Journal of Biological Chemistry.

[3]  G. Giebisch A trail of research on potassium. , 2002, Kidney international.

[4]  G. Giebisch,et al.  Hydrolyzable ATP and PIP2 Modulate the Small-conductance K+ Channel in Apical Membranes of Rat Cortical-Collecting Duct (CCD) , 2002, The Journal of general physiology.

[5]  A. S. Segal,et al.  Hyperkalemia: An adaptive response in chronic renal insufficiency. , 2002, Kidney international.

[6]  G. Giebisch,et al.  The Carboxyl Termini of KATP Channels Bind Nucleotides* , 2002, The Journal of Biological Chemistry.

[7]  G. Giebisch,et al.  Nucleotides and phospholipids compete for binding to the C terminus of KATP channels , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Laprade,et al.  Molecular identity and regulation of renal potassium channels. , 2001, The Japanese journal of physiology.

[9]  J. Barhanin,et al.  Role of KCNE1-dependent K+ fluxes in mouse proximal tubule. , 2001, Journal of the American Society of Nephrology : JASN.

[10]  G. Giebisch Renal potassium channels: function, regulation, and structure. , 2001, Kidney international.

[11]  L. Satlin,et al.  Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. , 2001, American journal of physiology. Renal physiology.

[12]  G. Giebisch,et al.  Regulation of ROMK1 Channels by Protein-tyrosine Kinase and -tyrosine Phosphatase* , 2001, The Journal of Biological Chemistry.

[13]  S. Muto,et al.  Potassium transport in the mammalian collecting duct. , 2001, Physiological reviews.

[14]  A. Doucet,et al.  Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. , 2001, Physiological reviews.

[15]  G. Giebisch,et al.  Renal tubule potassium channels: function, regulation and structure. , 2000, Acta physiologica Scandinavica.

[16]  I. J. Lynch,et al.  Activation of H(+)-K(+)-ATPase by CO(2) requires a basolateral Ba(2+)-sensitive pathway during K restriction. , 2000, American journal of physiology. Renal physiology.

[17]  Chou-Long Huang,et al.  Phosphatidylinositol 4,5-Bisphosphate and Intracellular pH Regulate the ROMK1 Potassium Channel via Separate but Interrelated Mechanisms* , 2000, The Journal of Biological Chemistry.

[18]  G. Giebisch,et al.  Protein tyrosine kinase regulates the number of renal secretory K channels. , 2000, American journal of physiology. Renal physiology.

[19]  L. Palmer Potassium secretion and the regulation of distal nephron K channels. , 1999, American journal of physiology. Renal physiology.

[20]  A. Doucet,et al.  Collecting duct adaptation to potassium depletion. , 1999, Seminars in nephrology.

[21]  R. Silver,et al.  H+-K+-ATPases: regulation and role in pathophysiological states. , 1999, American journal of physiology. Renal physiology.

[22]  H. Liou,et al.  Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Y. Asano,et al.  Basolateral Na+ pump modulates apical Na+ and K+ conductances in rabbit cortical collecting ducts. , 1999, The American journal of physiology.

[24]  M. Imai,et al.  Flow-Dependent Activation of Maxi K+ Channels in Apical Membrane of Rabbit Connecting Tubule , 1998, The Journal of Membrane Biology.

[25]  G. Giebisch Renal potassium transport: mechanisms and regulation. , 1998, American journal of physiology. Renal physiology.

[26]  D. Hilgemann,et al.  Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ , 1998, Nature.

[27]  C. Montrose‐Rafizadeh,et al.  Cloning and characterization of maxi K+ channel alpha-subunit in rabbit kidney. , 1997, The American journal of physiology.

[28]  H. Choe,et al.  A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating. , 1997, American journal of physiology. Renal physiology.

[29]  C. Montrose‐Rafizadeh,et al.  Cloning and characterization of maxi K+ channel α-subunit in rabbit kidney. , 1997, American journal of physiology. Renal physiology.

[30]  G. Desir,et al.  Cloning and localization of a double-pore K channel, KCNK1: exclusive expression in distal nephron segments. , 1997, American journal of physiology. Renal physiology.

[31]  L. Jan,et al.  Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH. , 1996, The EMBO journal.

[32]  S. Hebert,et al.  Cytochrome P-450 metabolites mediate extracellular Ca(2+)-induced inhibition of apical K+ channels in the TAL. , 1996, The American journal of physiology.

[33]  S. Hebert An ATP-regulated, inwardly rectifying potassium channel from rat kidney (ROMK). , 1995, Kidney international.

[34]  G. Desir Molecular characterization of voltage and cyclic nucleotide-gated potassium channels in kidney. , 1995, Kidney international.

[35]  P. Welling Cross-talk and the role of KATP channels in the proximal tubule. , 1995, Kidney international.

[36]  H Sackin,et al.  Mechanosensitive channels. , 1995, Annual review of physiology.

[37]  G. Giebisch,et al.  Mechanism of apical K+ channel modulation in principal renal tubule cells. Effect of inhibition of basolateral Na(+)-K(+)-ATPase , 1993, The Journal of general physiology.

[38]  W. Jonathan Lederer,et al.  Cloning and expression of an inwardly rectifying ATP-regulated potassium channel , 1993, Nature.

[39]  B. Cain,et al.  The renal H-K-ATPase: physiological significance and role in potassium homeostasis. , 1993, Annual Review of Physiology.

[40]  F. S. Wright,et al.  Active potassium absorption by the renal distal tubule. , 1992, The American journal of physiology.

[41]  J. Pácha,et al.  Apical maxi K channels in intercalated cells of CCT. , 1991, The American journal of physiology.

[42]  H. Adrogué,et al.  Kaliuretic response to potassium loading in amiloride-treated dogs. , 1990, Renal physiology and biochemistry.

[43]  B. Stanton,et al.  Renal potassium transport: morphological and functional adaptations. , 1989, The American journal of physiology.

[44]  L. Palmer,et al.  Low-conductance K channels in apical membrane of rat cortical collecting tubule. , 1989, The American journal of physiology.

[45]  A. Weinstein,et al.  Modeling the proximal tubule: complications of the paracellular pathway. , 1988, The American journal of physiology.

[46]  F. S. Wright,et al.  Chloride-dependent potassium secretion in early and late renal distal tubules. , 1987, The American journal of physiology.

[47]  R. Greger,et al.  Role of K+ conductive pathways in the nephron. , 1987, Kidney international.

[48]  R. Jamison Potassium recycling. , 1987, Kidney international.

[49]  G. Giebisch,et al.  Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. I. Helman,et al.  Transport characteristics of renal collecting tubules: influences of DOCA and diet. , 1977, The American journal of physiology.

[51]  H. Ussing The alkali metal ions in isolated systems and tissues , 1959 .