Nanofluids Research: Key Issues

Nanofluids are a new class of fluids engineered by dispersing nanometer-size structures (particles, fibers, tubes, droplets) in base fluids. The very essence of nanofluids research and development is to enhance fluid macroscopic and megascale properties such as thermal conductivity through manipulating microscopic physics (structures, properties and activities). Therefore, the success of nanofluid technology depends very much on how well we can address issues like effective means of microscale manipulation, interplays among physics at different scales and optimization of microscale physics for the optimal megascale properties. In this work, we take heat-conduction nanofluids as examples to review methodologies available to effectively tackle these key but difficult problems and identify the future research needs as well. The reviewed techniques include nanofluids synthesis through liquid-phase chemical reactions in continuous-flow microfluidic microreactors, scaling-up by the volume averaging and constructal design with the constructal theory. The identified areas of future research contain microfluidic nanofluids, thermal waves and constructal nanofluids.

[1]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[2]  Wenhua Yu,et al.  Nanofluids: Science and Technology , 2007 .

[3]  C. Sobhan,et al.  Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications , 2008 .

[4]  Hari Singh Nalwa,et al.  Encyclopedia of nanoscience and nanotechnology , 2011 .

[5]  D. Tzou Thermal instability of nanofluids in natural convection , 2008 .

[6]  Stephen U. S. Choi NANOFLUIDS: FROM VISION TO REALITY THROUGH RESEARCH , 2009 .

[7]  Xiaohao Wei,et al.  Heat Conduction: Mathematical Models and Analytical Solutions , 2008 .

[8]  D. Cahill,et al.  Thermal conductivity of nanoparticle suspensions , 2006 .

[9]  Rengasamy Ponnappan,et al.  Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study , 2007 .

[10]  S. Phillpot,et al.  THERMAL TRANSPORT IN NANOFLUIDS1 , 2004 .

[11]  Liqiu Wang,et al.  Constructal Allocation of Nanoparticles in Nanofluids , 2010 .

[12]  Jing Fan,et al.  Constructal design of nanofluids , 2010 .

[13]  H. Kang,et al.  Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume , 2006 .

[14]  Haitao Zhu,et al.  Critical Issues in Nanofluids Preparation, Characterization and Thermal Conductivity , 2009 .

[15]  Tiantian Kong,et al.  CuS/Cu2S nanofluids: Synthesis and thermal conductivity , 2010 .

[16]  A. Bejan,et al.  Constructal theory of generation of configuration in nature and engineering , 2006 .

[17]  Yulong Ding,et al.  Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) , 2007 .

[18]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[19]  Samuel K Sia,et al.  Mixing with bubbles: a practical technology for use with portable microfluidic devices. , 2006, Lab on a chip.

[21]  Abdulhakem Y. Elezzabi,et al.  Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser , 2005 .

[22]  Liqiu Wang,et al.  Review of Heat Conduction in Nanofluids , 2011 .

[23]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[24]  F. Durst,et al.  Further contributions on the two-dimensional flow in a sudden expansion , 1997, Journal of Fluid Mechanics.

[25]  Liqiu Wang,et al.  Generalized Fourier law , 1994 .

[26]  Roberto Piazza,et al.  Optical measurements of the thermal properties of nanofluids , 2006 .

[27]  R. Prasher,et al.  Thermal conductivity of nanoscale colloidal solutions (nanofluids). , 2005, Physical review letters.

[28]  Prasanta Kumar Das,et al.  Synthesis and characterization of nanofluid for advanced heat transfer applications , 2006 .

[29]  Huaqing Xie,et al.  Effective thermal conductivity of nanofluids containing spherical nanoparticles , 2005 .

[30]  Liqiu Wang,et al.  Flows Through Porous Media: A Theoretical Development at Macroscale , 2000 .

[31]  S. Yip,et al.  Mean-field versus microconvection effects in nanofluid thermal conduction. , 2007, Physical review letters.

[32]  Liqiu Wang,et al.  Formation of nanoliter droplets in a confined microfluidic T-shaped junction: Formation time and droplet volume , 2009 .

[33]  Lin Cheng,et al.  Magic microfluidic T-junctions: Valving and bubbling , 2009 .

[34]  Jin-Woo Choi,et al.  A novel in-plane passive microfluidic mixer with modified Tesla structures. , 2004, Lab on a chip.

[35]  Haisheng Chen,et al.  Rheological behaviour of ethylene glycol based titania nanofluids , 2007 .

[36]  C. Elphick,et al.  Constructal Theory: From Engineering to Physics, and How Flow Systems Develop Shape and , 2006 .

[37]  S. Murshed Correction and comment on “thermal conductance of nanofluids: is the controversy over?” , 2009 .

[38]  Mingtian Xu,et al.  REMOVED: Chapter 4 Multiscale Theorems , 2008 .

[39]  Tae-Keun Hong,et al.  Study of the enhanced thermal conductivity of Fe nanofluids , 2005 .

[40]  Jing Fan,et al.  MICROSTRUCTURAL EFFECTS ON MACROSCALE THERMAL PROPERTIES IN NANOFLUIDS , 2010 .

[41]  Hong-Ming Lin,et al.  Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS) , 2005 .

[42]  W. Zhong,et al.  Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives , 2007 .

[43]  A. Nikolov,et al.  Spreading of nanofluids on solids , 2003, Nature.

[44]  Victor M Ugaz,et al.  Multivortex micromixing. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[46]  R. Prasher,et al.  Thermal conductance of nanofluids: is the controversy over? , 2008 .

[47]  Liqiu Wang,et al.  Effective thermal conductivity of nanofluids: the effects of microstructure , 2010 .

[48]  Simon R. Phillpot,et al.  Effect of liquid layering at the liquid–solid interface on thermal transport , 2004 .

[49]  Xiaohao Wei,et al.  Nanofluids: Synthesis, Heat Conduction, and Extension , 2009 .

[50]  Wenhua Yu,et al.  The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , 2003 .

[51]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[52]  Xiaohao Wei,et al.  Synthesis and thermal conductivity of microfluidic copper nanofluids , 2010 .

[53]  Victor M Ugaz,et al.  Fluid mixing in planar spiral microchannels. , 2006, Lab on a chip.

[54]  Wenhua Yu,et al.  The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model , 2004 .

[55]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[56]  Liqiu Wang,et al.  Constructal Design of Particle Volume Fraction in Nanofluids , 2009 .

[57]  Liqiu Wang,et al.  Microfluidic synthesis of copper nanofluids , 2010 .

[58]  Adrian Bejan,et al.  Design with constructal theory , 2008 .

[59]  Michel Quintard,et al.  Nanofluids of the Future , 2009 .

[60]  Xiaohao Wei,et al.  CePO4 Nanofluids: Synthesis and Thermal Conductivity , 2009 .

[61]  Liqiu Wang,et al.  Experimental Investigation of Bubble Formation in a Microfluidic T-Shaped Junction , 2009 .

[62]  G. P. Peterson,et al.  Heat and Mass Transfer in Fluids with Nanoparticle Suspensions , 2006 .

[63]  R. Prasher,et al.  Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids , 2006 .

[64]  R. Prasher,et al.  Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids , 2004 .

[65]  A. Klibanov Improving enzymes by using them in organic solvents , 2001, Nature.

[66]  Jessica Gorman Nanofluid Flow: Detergents may benefit from new insight , 2003 .

[67]  K. C. Cheng,et al.  Flow transitions and combined free and forced convective heat transfer in rotating curved channels: The case of positive rotation , 1996 .

[68]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[69]  Patricia E. Gharagozloo,et al.  A Benchmark Study on the Thermal Conductivity of Nanofluids , 2009 .

[70]  Tianliang Yang,et al.  Multiplicity and stability of convection in curved ducts: Review and progress , 2004 .

[71]  Tsing-Tshih Tsung,et al.  Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS) , 2005 .

[72]  K. Leong,et al.  A model for the thermal conductivity of nanofluids – the effect of interfacial layer , 2006 .

[73]  Nam-Trung Nguyen,et al.  Micromixers: Fundamentals, Design, and Fabrication , 2008 .

[74]  Huaqing Xie,et al.  Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture , 2005 .

[75]  Sarit K. Das,et al.  Heat Transfer in Nanofluids—A Review , 2006 .

[76]  M. Pileni,et al.  Magnetic Fluids: Fabrication, Magnetic Properties, and Organization of Nanocrystals , 2001 .

[77]  Fang Liu,et al.  Forced convection in slightly curved microchannels , 2007 .

[78]  R. Prasher,et al.  Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). , 2006, Nano letters.

[79]  Wenhua Yu,et al.  Comprar Nanofluids: Science and Technology | Sarit K. Das | 9780470074732 | Wiley , 2007 .

[80]  P. Schwindt,et al.  Synaptic depression in the localization of sound , 2003, Nature.

[81]  Hong-Ming Lin,et al.  Nanoparticle suspension preparation using the arc spray nanoparticle synthesis system combined with ultrasonic vibration and rotating electrode , 2005 .

[82]  Tiantian Kong,et al.  Synthesis and thermal conductivity of Cu2O nanofluids , 2009 .

[83]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[84]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[85]  Mingtian Xu,et al.  Thermal oscillation and resonance in dual-phase-lagging heat conduction , 2002 .