Spatial Role Labeling based on Improved Pre-trained Word Embeddings and Transfer Learning

Abstract In several real-world applications, extracting spatial semantics from text is critical. Spatial Role Labeling (SpRL) introduces a language-independent annotation scheme used in these applications, particularly for reasoning purposes. This paper proposes, first of all, a transfer learning method with a word embeddings-based approach for SpRL. Then, we enhance the word vectors with POS tags and CNN-based character-level representations. Finally, we propose a Residual BiLSTM CRF deep learning model to identify the spatial roles. The experimental results on two datasets: SemEval-2012 and SemEval-2013 Task 3, show that the proposed model outperforms other machine learning approaches.

[1]  Sanda M. Harabagiu,et al.  UTD-SpRL: A Joint Approach to Spatial Role Labeling , 2012, SemEval@NAACL-HLT.

[2]  Omer Levy,et al.  Dependency-Based Word Embeddings , 2014, ACL.

[3]  Mikko Kurimo,et al.  Speech retrieval from unsegmented finnish audio using statistical morpheme-like units for segmentation, recognition, and retrieval , 2008, TSLP.

[4]  Eduard H. Hovy,et al.  End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF , 2016, ACL.

[5]  Marie-Francine Moens,et al.  SemEval-2012 Task 3: Spatial Role Labeling , 2012, SemEval@NAACL-HLT.

[6]  James Pustejovsky,et al.  SemEval-2015 Task 8: SpaceEval , 2015, *SEMEVAL.

[7]  Marie-Francine Moens,et al.  Global machine learning for spatial ontology population , 2015, J. Web Semant..

[8]  Kirk Roberts,et al.  A dataset of chest X-ray reports annotated with Spatial Role Labeling annotations , 2020, Data in brief.

[9]  Roberto Basili,et al.  UNITOR-HMM-TK: Structured Kernel-based learning for Spatial Role Labeling , 2013, SemEval@NAACL-HLT.

[10]  Cynthia Matuszek,et al.  Grounded Language Learning: Where Robotics and NLP Meet , 2018, IJCAI.

[11]  Paul Clough,et al.  The IAPR TC-12 Benchmark: A New Evaluation Resource for Visual Information Systems , 2006 .

[12]  Marie-Francine Moens,et al.  Spatial role labeling: Towards extraction of spatial relations from natural language , 2011, TSLP.

[13]  Fabiano Dalpiaz,et al.  Towards Aligning Multi-concern Models via NLP , 2017, 2017 IEEE 25th International Requirements Engineering Conference Workshops (REW).

[14]  Guohui Xiao,et al.  Ontop-spatial: Ontop of geospatial databases , 2019, J. Web Semant..

[15]  Melita Hadzagic,et al.  Hard and Soft Data Fusion for Maritime Traffic Monitoring Using the Integrated Ornstein-Uhlenbeck Process , 2020, 2020 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA).

[16]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.