Differential NMDA receptor-dependent calcium loading and mitochondrial dysfunction in CA1 vs. CA3 hippocampal neurons

[1]  D. Nicholls Mitochondrial calcium function and dysfunction in the central nervous system. , 2009, Biochimica et biophysica acta.

[2]  N. Brustovetsky,et al.  Role of cyclophilin D-dependent mitochondrial permeability transition in glutamate-induced calcium deregulation and excitotoxic neuronal death , 2009, Experimental Neurology.

[3]  J. Mellor,et al.  PICK1-mediated Glutamate Receptor Subunit 2 (GluR2) Trafficking Contributes to Cell Death in Oxygen/Glucose-deprived Hippocampal Neurons* , 2009, Journal of Biological Chemistry.

[4]  M. Baudry,et al.  Progesterone reverses 17β‐estradiol‐mediated neuroprotection and BDNF induction in cultured hippocampal slices , 2009, The European journal of neuroscience.

[5]  B. Lin,et al.  Intracellular Zn2+ Accumulation Contributes to Synaptic Failure, Mitochondrial Depolarization, and Cell Death in an Acute Slice Oxygen–Glucose Deprivation Model of Ischemia , 2009, The Journal of Neuroscience.

[6]  B. Barbour,et al.  Zinc at glutamatergic synapses , 2009, Neuroscience.

[7]  Miou Zhou,et al.  EUK-207, a superoxide dismutase/catalase mimetic, is neuroprotective against oxygen/glucose deprivation-induced neuronal death in cultured hippocampal slices , 2009, Brain Research.

[8]  I. Reynolds,et al.  Glutamate mobilizes [Zn2+]i through Ca2+‐dependent reactive oxygen species accumulation , 2008, Journal of neurochemistry.

[9]  C. Brantner,et al.  Reduced calcium‐dependent mitochondrial damage underlies the reduced vulnerability of excitotoxicity‐tolerant hippocampal neurons , 2008, Journal of neurochemistry.

[10]  J. Geddes,et al.  N Terminus of Calpain 1 Is a Mitochondrial Targeting Sequence* , 2008, Journal of Biological Chemistry.

[11]  R. Huganir,et al.  PICK1 and Phosphorylation of the Glutamate Receptor 2 (GluR2) AMPA Receptor Subunit Regulates GluR2 Recycling after NMDA Receptor-Induced Internalization , 2007, The Journal of Neuroscience.

[12]  R. Gross,et al.  Ca2+‐dependent generation of mitochondrial reactive oxygen species serves as a signal for poly(ADP‐ribose) polymerase‐1 activation during glutamate excitotoxicity , 2007, The Journal of physiology.

[13]  H. Düssmann,et al.  Mitochondrial and Plasma Membrane Potential of Cultured Cerebellar Neurons during Glutamate-Induced Necrosis, Apoptosis, and Tolerance , 2007, The Journal of Neuroscience.

[14]  Zhen Yan,et al.  Calpain regulation of AMPA receptor channels in cortical pyramidal neurons , 2007, The Journal of physiology.

[15]  R. Zukin,et al.  Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death , 2007, Trends in Neurosciences.

[16]  Christian J. Stork,et al.  Intracellular Zinc Elevation Measured with a “Calcium-Specific” Indicator during Ischemia and Reperfusion in Rat Hippocampus: A Question on Calcium Overload , 2006, The Journal of Neuroscience.

[17]  J. Weiss,et al.  Calcium-permeable AMPA channels in neurodegenerative disease and ischemia , 2006, Current Opinion in Neurobiology.

[18]  U. Gerber,et al.  NMDA receptors and the differential ischemic vulnerability of hippocampal neurons , 2006, The European journal of neuroscience.

[19]  Fabio Di Lisa,et al.  The mitochondrial permeability transition from in vitro artifact to disease target , 2006, The FEBS journal.

[20]  C. Chinopoulos,et al.  Calcium, mitochondria and oxidative stress in neuronal pathology , 2006, The FEBS journal.

[21]  S. Korsmeyer,et al.  Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Jemmerson,et al.  Cytochrome C release from CNS mitochondria and potential for clinical intervention in apoptosis-mediated CNS diseases. , 2005, Antioxidants & redox signaling.

[23]  T. Wieloch,et al.  Chelation of intracellular calcium reduces cell death after hyperglycemic in vitro ischemia in murine hippocampal slice cultures , 2005, Brain Research.

[24]  A. Bush,et al.  The neurobiology of zinc in health and disease , 2005, Nature Reviews Neuroscience.

[25]  C. Valenzuela,et al.  Differential expression of NMDA receptor subunits and splice variants among the CA1, CA3 and dentate gyrus of the adult rat. , 2005, Brain research. Molecular brain research.

[26]  Jeffrey Robbins,et al.  Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death , 2005, Nature.

[27]  Dirk Dietrich,et al.  Endogenous Ca2+ Buffer Concentration and Ca2+ Microdomains in Hippocampal Neurons , 2005, The Journal of Neuroscience.

[28]  M. Bennett,et al.  Late Calcium EDTA Rescues Hippocampal CA1 Neurons from Global Ischemia-Induced Death , 2004, The Journal of Neuroscience.

[29]  P. Brookes,et al.  Calcium, ATP, and ROS: a mitochondrial love-hate triangle. , 2004, American journal of physiology. Cell physiology.

[30]  G. Fiskum,et al.  Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. , 2004, Cell calcium.

[31]  C. Winters,et al.  Excitotoxic Calcium Overload in a Subpopulation of Mitochondria Triggers Delayed Death in Hippocampal Neurons , 2004, The Journal of Neuroscience.

[32]  Nicholls Dg Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. , 2004, Current molecular medicine.

[33]  S. Lipton,et al.  Crosstalk between Nitric Oxide and Zinc Pathways to Neuronal Cell Death Involving Mitochondrial Dysfunction and p38-Activated K+ Channels , 2004, Neuron.

[34]  U. Gerber,et al.  Differential Calcium-Dependent Modulation of NMDA Currents in CA1 and CA3 Hippocampal Pyramidal Cells , 2004, The Journal of Neuroscience.

[35]  T. Wieloch,et al.  Flow cytometric analysis of mitochondria from CA1 and CA3 regions of rat hippocampus reveals differences in permeability transition pore activation , 2003, Journal of neurochemistry.

[36]  Jerry H. Wang,et al.  Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors , 2003, Nature Neuroscience.

[37]  T. Wieloch,et al.  Mouse Hippocampal Organotypic Tissue Cultures Exposed to In Vitro “Ischemia” Show Selective and Delayed CA1 Damage that is Aggravated by Glucose , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[38]  L. Pozzo-Miller,et al.  Correlated Calcium Uptake and Release by Mitochondria and Endoplasmic Reticulum of CA3 Hippocampal Dendrites after Afferent Synaptic Stimulation , 2002, The Journal of Neuroscience.

[39]  S. Schiffmann,et al.  ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice , 2002, The Cerebellum.

[40]  P. Carlen,et al.  Dynamics of intracellular calcium and free radical production during ischemia in pyramidal neurons. , 2001, Free radical biology & medicine.

[41]  T. Kirino Delayed neuronal death , 2000, Neuropathology : official journal of the Japanese Society of Neuropathology.

[42]  I. Módy,et al.  Surviving Granule Cells of the Sclerotic Human Hippocampus Have Reduced Ca2+ Influx Because of a Loss of Calbindin-D28k in Temporal Lobe Epilepsy , 2000, The Journal of Neuroscience.

[43]  D. Friel,et al.  Depolarization-Induced Mitochondrial Ca Accumulation in Sympathetic Neurons: Spatial and Temporal Characteristics , 1999, The Journal of Neuroscience.

[44]  I. Módy,et al.  Calbindin-D28k fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice , 1998, Neuroscience.

[45]  P. Bickler,et al.  Hypoxia-tolerant neonatal CA1 neurons: relationship of survival to evoked glutamate release and glutamate receptor-mediated calcium changes in hippocampal slices. , 1998, Brain research. Developmental brain research.

[46]  P. Carlen,et al.  In Vitro Ischemia Promotes Glutamate-Mediated Free Radical Generation and Intracellular Calcium Accumulation in Hippocampal Pyramidal Neurons , 1997, The Journal of Neuroscience.

[47]  R. Leapman,et al.  Activity-Dependent Calcium Sequestration in Dendrites of Hippocampal Neurons in Brain Slices , 1997, The Journal of Neuroscience.

[48]  L. Sundstrom,et al.  Neuroprotection by both NMDA and non-NMDA receptor antagonists in in vitro ischemia , 1997, Brain Research.

[49]  D. Choi Calcium: still center-stage in hypoxic-ischemic neuronal death , 1995, Trends in Neurosciences.

[50]  R. S. Sloviter Calcium‐binding protein (calbindin‐D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity , 1989, The Journal of comparative neurology.

[51]  J. Olney,et al.  Brain Lesions in an Infant Rhesus Monkey Treated with Monosodium Glutamate , 1969, Science.

[52]  S. Sheu,et al.  Crosstalk signaling between mitochondrial Ca2+ and ROS. , 2009, Frontiers in bioscience.

[53]  S. Lipton,et al.  Excitatory amino acid neurotoxicity. , 2002, Advances in experimental medicine and biology.