<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M2">\begin{document}$ (X,T) $\end{document}</tex-math></inline-formula> be a topological dynamical system and <inline-formula><tex-math id="M3">\begin{document}$ n\geq 2 $\end{document}</tex-math></inline-formula>. We say that <inline-formula><tex-math id="M4">\begin{document}$ (X,T) $\end{document}</tex-math></inline-formula> is <inline-formula><tex-math id="M5">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise IP-sensitive (resp. <inline-formula><tex-math id="M6">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise thickly sensitive) if there exists a constant <inline-formula><tex-math id="M7">\begin{document}$ \delta>0 $\end{document}</tex-math></inline-formula> with the property that for each non-empty open subset <inline-formula><tex-math id="M8">\begin{document}$ U $\end{document}</tex-math></inline-formula> of <inline-formula><tex-math id="M9">\begin{document}$ X $\end{document}</tex-math></inline-formula>, there exist <inline-formula><tex-math id="M10">\begin{document}$ x_1,x_2,\dotsc,x_n\in U $\end{document}</tex-math></inline-formula> such that</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \Bigl\{k\in \mathbb{N}\colon \min\limits_{1\le i<j\le n}d(T^k x_i,T^k x_j)>\delta\Bigr\} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>is an IP-set (resp. a thick set).</p><p style='text-indent:20px;'>We obtain several sufficient and necessary conditions of a dynamical system to be <inline-formula><tex-math id="M11">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise IP-sensitive or <inline-formula><tex-math id="M12">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise thickly sensitive and show that any non-trivial weakly mixing system is <inline-formula><tex-math id="M13">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise IP-sensitive for all <inline-formula><tex-math id="M14">\begin{document}$ n\geq 2 $\end{document}</tex-math></inline-formula>, while it is <inline-formula><tex-math id="M15">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise thickly sensitive if and only if it has at least <inline-formula><tex-math id="M16">\begin{document}$ n $\end{document}</tex-math></inline-formula> minimal points. We characterize two kinds of sensitivity by considering some kind of factor maps. We introduce the opposite side of pairwise IP-sensitivity and pairwise thick sensitivity, named (almost) pairwise IP<inline-formula><tex-math id="M17">\begin{document}$ ^* $\end{document}</tex-math></inline-formula>-equicontinuity and (almost) pairwise syndetic equicontinuity, and obtain dichotomies results for them. In particular, we show that a minimal system is distal if and only if it is pairwise IP<inline-formula><tex-math id="M18">\begin{document}$ ^* $\end{document}</tex-math></inline-formula>-equicontinuous. We show that every minimal system admits a maximal almost pairwise IP<inline-formula><tex-math id="M19">\begin{document}$ ^* $\end{document}</tex-math></inline-formula>-equicontinuous factor and admits a maximal pairwise syndetic equicontinuous factor, and characterize them by the factor maps to their maximal distal factors.</p>
[1]
X. Ye,et al.
Mean equicontinuity and mean sensitivity
,
2013,
Ergodic Theory and Dynamical Systems.
[2]
S. Danny.
Interval Maps
,
2005
.
[3]
Wen Huang,et al.
Analogues of Auslander–Yorke theorems for multi-sensitivity
,
2015,
Ergodic Theory and Dynamical Systems.
[4]
Louis Auslander,et al.
Flows on Homogeneous Spaces
,
1963
.
[5]
Tao Yu,et al.
Mean equicontinuity, complexity and applications
,
2021
.
[6]
H. Furstenberg,et al.
Strict Ergodicity and Transformation of the Torus
,
1961
.
[7]
J. Auslander,et al.
Minimal flows and their extensions
,
1988
.
[8]
Ethan Akin.
Recurrence in topological dynamics
,
1997
.
[9]
X. Ye,et al.
Sensitivity, proximal extension and higher order almost automorphy
,
2016,
1605.01119.
[10]
X. Ye,et al.
Recent development of chaos theory in topological dynamics
,
2015,
1503.06425.
[11]
Wen Huang,et al.
Finite Intersection Property and Dynamical Compactness
,
2016,
1605.05851.
[12]
Patrick F. Rock,et al.
Sensitivity
,
2014,
Radiopaedia.org.
[13]
Robert Ellis,et al.
Homomorphisms of transformation groups
,
1960
.
[14]
Xiong Jincheng.
Chaos in a topologically transitive system
,
2005
.
[15]
de Jan Vries,et al.
Elements of Topological Dynamics
,
1993
.
[16]
Dynamical characterization of C-sets and its application
,
2011,
1110.5435.
[17]
Jesse Paul Clay.
Proximity relations in transformation groups
,
1963
.
[18]
T. K. Subrahmonian Moothathu,et al.
Stronger forms of sensitivity for dynamical systems
,
2007
.
[19]
R. Ellis.
A SEMIGROUP ASSOCIATED WITH A TRANSFORMATION GROUP(1)
,
2010
.
[20]
E. Akin,et al.
Sufficient conditions under which a transitive system is chaotic
,
2009,
Ergodic Theory and Dynamical Systems.
[21]
James A. Yorke,et al.
INTERVAL MAPS, FACTORS OF MAPS, AND CHAOS
,
1980
.
[22]
Jian Li,et al.
Stronger Versions of Sensitivity for Minimal Group Actions
,
2020,
Acta Mathematica Sinica, English Series.
[23]
Ethan Akin.
Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions
,
2013
.
[24]
Noninvertible minimal maps
,
2001
.
[25]
Harry Furstenberg,et al.
Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation
,
1967,
Mathematical systems theory.
[26]
P. Alam.
‘W’
,
2021,
Composites Engineering.
[27]
Harry Furstenberg,et al.
Recurrence in Ergodic Theory and Combinatorial Number Theory
,
2014
.