On $ n $-tuplewise IP-sensitivity and thick sensitivity

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M2">\begin{document}$ (X,T) $\end{document}</tex-math></inline-formula> be a topological dynamical system and <inline-formula><tex-math id="M3">\begin{document}$ n\geq 2 $\end{document}</tex-math></inline-formula>. We say that <inline-formula><tex-math id="M4">\begin{document}$ (X,T) $\end{document}</tex-math></inline-formula> is <inline-formula><tex-math id="M5">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise IP-sensitive (resp. <inline-formula><tex-math id="M6">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise thickly sensitive) if there exists a constant <inline-formula><tex-math id="M7">\begin{document}$ \delta>0 $\end{document}</tex-math></inline-formula> with the property that for each non-empty open subset <inline-formula><tex-math id="M8">\begin{document}$ U $\end{document}</tex-math></inline-formula> of <inline-formula><tex-math id="M9">\begin{document}$ X $\end{document}</tex-math></inline-formula>, there exist <inline-formula><tex-math id="M10">\begin{document}$ x_1,x_2,\dotsc,x_n\in U $\end{document}</tex-math></inline-formula> such that</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \Bigl\{k\in \mathbb{N}\colon \min\limits_{1\le i<j\le n}d(T^k x_i,T^k x_j)>\delta\Bigr\} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>is an IP-set (resp. a thick set).</p><p style='text-indent:20px;'>We obtain several sufficient and necessary conditions of a dynamical system to be <inline-formula><tex-math id="M11">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise IP-sensitive or <inline-formula><tex-math id="M12">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise thickly sensitive and show that any non-trivial weakly mixing system is <inline-formula><tex-math id="M13">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise IP-sensitive for all <inline-formula><tex-math id="M14">\begin{document}$ n\geq 2 $\end{document}</tex-math></inline-formula>, while it is <inline-formula><tex-math id="M15">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise thickly sensitive if and only if it has at least <inline-formula><tex-math id="M16">\begin{document}$ n $\end{document}</tex-math></inline-formula> minimal points. We characterize two kinds of sensitivity by considering some kind of factor maps. We introduce the opposite side of pairwise IP-sensitivity and pairwise thick sensitivity, named (almost) pairwise IP<inline-formula><tex-math id="M17">\begin{document}$ ^* $\end{document}</tex-math></inline-formula>-equicontinuity and (almost) pairwise syndetic equicontinuity, and obtain dichotomies results for them. In particular, we show that a minimal system is distal if and only if it is pairwise IP<inline-formula><tex-math id="M18">\begin{document}$ ^* $\end{document}</tex-math></inline-formula>-equicontinuous. We show that every minimal system admits a maximal almost pairwise IP<inline-formula><tex-math id="M19">\begin{document}$ ^* $\end{document}</tex-math></inline-formula>-equicontinuous factor and admits a maximal pairwise syndetic equicontinuous factor, and characterize them by the factor maps to their maximal distal factors.</p>

[1]  X. Ye,et al.  Mean equicontinuity and mean sensitivity , 2013, Ergodic Theory and Dynamical Systems.

[2]  S. Danny Interval Maps , 2005 .

[3]  Wen Huang,et al.  Analogues of Auslander–Yorke theorems for multi-sensitivity , 2015, Ergodic Theory and Dynamical Systems.

[4]  Louis Auslander,et al.  Flows on Homogeneous Spaces , 1963 .

[5]  Tao Yu,et al.  Mean equicontinuity, complexity and applications , 2021 .

[6]  H. Furstenberg,et al.  Strict Ergodicity and Transformation of the Torus , 1961 .

[7]  J. Auslander,et al.  Minimal flows and their extensions , 1988 .

[8]  Ethan Akin Recurrence in topological dynamics , 1997 .

[9]  X. Ye,et al.  Sensitivity, proximal extension and higher order almost automorphy , 2016, 1605.01119.

[10]  X. Ye,et al.  Recent development of chaos theory in topological dynamics , 2015, 1503.06425.

[11]  Wen Huang,et al.  Finite Intersection Property and Dynamical Compactness , 2016, 1605.05851.

[12]  Patrick F. Rock,et al.  Sensitivity , 2014, Radiopaedia.org.

[13]  Robert Ellis,et al.  Homomorphisms of transformation groups , 1960 .

[14]  Xiong Jincheng Chaos in a topologically transitive system , 2005 .

[15]  de Jan Vries,et al.  Elements of Topological Dynamics , 1993 .

[16]  Dynamical characterization of C-sets and its application , 2011, 1110.5435.

[17]  Jesse Paul Clay Proximity relations in transformation groups , 1963 .

[18]  T. K. Subrahmonian Moothathu,et al.  Stronger forms of sensitivity for dynamical systems , 2007 .

[19]  R. Ellis A SEMIGROUP ASSOCIATED WITH A TRANSFORMATION GROUP(1) , 2010 .

[20]  E. Akin,et al.  Sufficient conditions under which a transitive system is chaotic , 2009, Ergodic Theory and Dynamical Systems.

[21]  James A. Yorke,et al.  INTERVAL MAPS, FACTORS OF MAPS, AND CHAOS , 1980 .

[22]  Jian Li,et al.  Stronger Versions of Sensitivity for Minimal Group Actions , 2020, Acta Mathematica Sinica, English Series.

[23]  Ethan Akin Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions , 2013 .

[24]  Noninvertible minimal maps , 2001 .

[25]  Harry Furstenberg,et al.  Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.

[26]  P. Alam ‘W’ , 2021, Composites Engineering.

[27]  Harry Furstenberg,et al.  Recurrence in Ergodic Theory and Combinatorial Number Theory , 2014 .