A model-based strategy to investigate the role of microRNA regulation in cancer signalling networks

In this paper we present and discuss a model-based approach to link miRNA translational control with cell signalling networks. MicroRNAs are small regulatory RNAs that are able to regulate the activity and the stability of specific messenger RNA and have been implicated in tumour progression due to their ability to translationally regulate critical oncogenes and tumour suppressors. In our approach, data on protein–protein interactions and miRNA regulation, obtained from bioinformatics databases, are integrated with quantitative experimental data using mathematical modelling. Predictive computational simulations and qualitative (bifurcation) analyses of those mathematical models are employed to further support the investigation of such multifactorial networks in the context of cancer progression. We illustrate our approach with the C-Myc/E2F signalling network, involved in the progression of several tumour subtypes, including colorectal cancer.

[1]  A. Goldbeter,et al.  From simple to complex oscillatory behavior in metabolic and genetic control networks. , 2001, Chaos.

[2]  Helen E. Parkinson,et al.  ArrayExpress—a public database of microarray experiments and gene expression profiles , 2006, Nucleic Acids Res..

[3]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[4]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[5]  Massimo Negrini,et al.  E 2 F 1-Regulated MicroRNAs Impair TGF b-Dependent Cell-Cycle Arrest and Apoptosis in Gastric Cancer , 2022 .

[6]  O Wolkenhauer,et al.  Role of inhibitory proteins as modulators of oscillations in NFB signalling. , 2009, IET systems biology.

[7]  Y. Zhang,et al.  IntAct—open source resource for molecular interaction data , 2006, Nucleic Acids Res..

[8]  D Greenhalgh,et al.  Hopf bifurcation in epidemic models with a time delay in vaccination. , 1999, IMA journal of mathematics applied in medicine and biology.

[9]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[10]  Baltazar D. Aguda,et al.  Bistability in chemical reaction networks: Theory and application to the peroxidase–oxidase reaction , 1987 .

[11]  Hanno Steen,et al.  Development of human protein reference database as an initial platform for approaching systems biology in humans. , 2003, Genome research.

[12]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[13]  Olaf Wolkenhauer,et al.  A multi-level model accounting for the effects of JAK2-STAT5 signal modulation in erythropoiesis , 2009, Comput. Biol. Chem..

[14]  J. Ripperger,et al.  The rhythms of life , 2007, Genome Biology.

[15]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[16]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[17]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[18]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[19]  M. Malumbres,et al.  Control of cell proliferation pathways by microRNAs , 2008, Cell cycle.

[20]  Reka Albert,et al.  Biological switches and clocks , 2008, Journal of The Royal Society Interface.

[21]  Dennis B. Troup,et al.  NCBI GEO: archive for high-throughput functional genomic data , 2008, Nucleic Acids Res..

[22]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[23]  Roy Parker,et al.  Computational analysis of miRNA-mediated repression of translation: implications for models of translation initiation inhibition. , 2008, RNA.

[24]  Michael C. Mackey,et al.  From Clocks to Chaos , 1988 .

[25]  Andriani Daskalaki,et al.  Handbook of Research on Systems Biology Applications in Medicine , 2008 .

[26]  Olaf Wolkenhauer,et al.  A system biology approach to understand functional activity of cell communication systems. , 2008, Methods in cell biology.

[27]  Eva Balsa-Canto,et al.  Parameter estimation and optimal experimental design. , 2008, Essays in biochemistry.

[28]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[29]  J. Banga,et al.  Computational procedures for optimal experimental design in biological systems. , 2008, IET systems biology.

[30]  J. Tyson,et al.  Computational Cell Biology , 2010 .

[31]  Y. Akao,et al.  let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. , 2006, Biological & pharmaceutical bulletin.

[32]  D. Iliopoulos,et al.  E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. , 2008, Cancer cell.

[33]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[34]  D. Lauffenburger,et al.  Physicochemical modelling of cell signalling pathways , 2006, Nature Cell Biology.

[35]  B. Hoffman,et al.  Apoptotic signaling by c-MYC , 2008, Oncogene.

[36]  O. Wolkenhauer,et al.  Time Delay and Epo Dose Modulation in a Multilevel Model for Erythropoiesis , 2009 .

[37]  Y. Yatabe,et al.  Reduced Expression of the let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival , 2004, Cancer Research.

[38]  Manfred Kunz,et al.  MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth , 2008, Cell Research.

[39]  James R. Johnson,et al.  Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression , 2004, Science.

[40]  S. Nikolov,et al.  Mathematical Description of Time Delays in Pathways Cross Talk , 2009 .

[41]  L. Chua,et al.  Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .

[42]  Eugene Berezikov,et al.  Approaches to microRNA discovery , 2006, Nature Genetics.

[43]  A. Goldbeter Computational approaches to cellular rhythms , 2002, Nature.

[44]  Weili Ma,et al.  p53-Dependent Transcriptional Repression of c-myc Is Required for G1 Cell Cycle Arrest , 2005, Molecular and Cellular Biology.

[45]  Olaf Wolkenhauer,et al.  A systems biology approach to analyse amplification in the JAK2-STAT5 signalling pathway , 2008, BMC Systems Biology.

[46]  A. Valencia,et al.  A gene network for navigating the literature , 2004, Nature Genetics.

[47]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[48]  Jan Krüger,et al.  RNAhybrid: microRNA target prediction easy, fast and flexible , 2006, Nucleic Acids Res..

[49]  Shigeyuki Yokoyama,et al.  Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. , 2007, Genes & development.

[50]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[51]  Olaf Wolkenhauer,et al.  Integration of sensitivity and bifurcation analysis to detect critical processes in a model combining signalling and cell population dynamics , 2010, Int. J. Syst. Sci..

[52]  Jürgen Jost,et al.  Gene and genon concept: coding versus regulation , 2007, Theory in Biosciences.

[53]  Gary D. Bader,et al.  BIND-a data specification for storing and describing biomolecular interactions, molecular complexes and pathways , 2000, Bioinform..

[54]  D B Kell,et al.  Oscillations in NF-kappaB signaling control the dynamics of gene expression. , 2004, Science.

[55]  Yuriy Gusev,et al.  Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. , 2007, RNA.

[56]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[57]  Klaus Scherrer,et al.  The gene and the genon concept: a functional and information-theoretic analysis , 2007, Molecular systems biology.

[58]  Christian von Mering,et al.  STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..

[59]  Jerry Pelletier,et al.  Short RNAs repress translation after initiation in mammalian cells. , 2006, Molecular cell.

[60]  Hailong Wu,et al.  p53 represses c-Myc through induction of the tumor suppressor miR-145 , 2009, Proceedings of the National Academy of Sciences.

[61]  Eva Balsa-Canto,et al.  Power-law models of signal transduction pathways. , 2007, Cellular signalling.

[62]  Raya Khanin,et al.  Computational Modeling of Post-Transcriptional Gene Regulation by MicroRNAs , 2008, J. Comput. Biol..

[63]  A. Pasquinelli,et al.  MicroRNA silencing through RISC recruitment of eIF6 , 2007, Nature.

[64]  Olaf Wolkenhauer,et al.  Dynamic properties of a delayed protein cross talk model , 2008, Biosyst..

[65]  Svetoslav Nikolov,et al.  STABILITY AND BIFURCATION BEHAVIOUR OF GENETIC REGULATORY SYSTEMS WITH TWO DELAYS , 2008 .

[66]  Mark Gerstein,et al.  Target hub proteins serve as master regulators of development in yeast. , 2006, Genes & development.

[67]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[68]  M. A. van de Wiel,et al.  MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression , 2009, British Journal of Cancer.

[69]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[70]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[71]  Avner Friedman,et al.  MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F, and Myc , 2008, Proceedings of the National Academy of Sciences.

[72]  L. Glass,et al.  From Clocks to Chaos: The Rhythms of Life , 1988 .

[73]  S. D. Selcuklu,et al.  miR-21 as a key regulator of oncogenic processes. , 2009, Biochemical Society transactions.

[74]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[75]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[76]  Markus Eiswirth,et al.  Feedback loops for chaos in activator-inhibitor systems. , 2005, The Journal of chemical physics.

[77]  O. Arino,et al.  Delay Differential Equations and Applications , 2006 .

[78]  K. Kosik,et al.  MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. , 2005, Cancer research.

[79]  B. Kholodenko Cell-signalling dynamics in time and space , 2006, Nature Reviews Molecular Cell Biology.

[80]  A. Sorribas,et al.  Cooperativity and saturation in biochemical networks: A saturable formalism using Taylor series approximations , 2007, Biotechnology and bioengineering.