Development of a novel dual-layer thick Ag substrate for surface-enhanced Raman scattering (SERS) of self-assembled monolayers

A dual-layer, thick (∼70 nm) vapor-deposited Ag substrate has been developed that gives enhancement factors on the order of 104 for surface-enhanced Raman scattering (SERS) experiments. This substrate has a total thickness of ∼70 nm but also has an outermost surface morphology that approximates that of a thin Ag island film (AgIF) substrate. This is accomplished using a dual overlayer/underlayer structure in which a thick underlayer of 45-nm Ag is vapor-deposited onto a treated glass slide. This Ag underlayer is exposed to ambient conditions under which the surface chemisorbs oxygen, leading to the thermodynamically favorable formation of an active Ag2O interface. An overlayer of 25-nm Ag is vapor-deposited on top of this structure. The first Ag/Ag2O underlayer produces an active interface that decreases the diffusion of the Ag atoms from the second vapor-deposited overlayer, thereby forming Ag particles with shapes favorable for SERS enhancement. Atomic force microscopy results show that the Ag overlayer...