Higher-order finite element methods for elliptic problems with interfaces

We present higher-order piecewise continuous finite element methods for solving a class of interface problems in two dimensions. The method is based on correction terms added to the right-hand side in the standard variational formulation of the problem. We prove optimal error estimates of the methods on general quasi-uniform and shape regular meshes in maximum norms. In addition, we apply the method to a Stokes interface problem, adding correction terms for the velocity and the pressure, obtaining optimal convergence results.

[1]  Zhilin Li,et al.  The immersed interface method for the Navier-Stokes equations with singular forces , 2001 .

[2]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[3]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[4]  Xu-dong Liu,et al.  A numerical method for solving variable coefficient elliptic equation with interfaces , 2005 .

[5]  Peter Hansbo,et al.  Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .

[6]  L. Heltai,et al.  A finite element approach to the immersed boundary method , 2003 .

[7]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[10]  T. Lin,et al.  HIGHER DEGREE IMMERSED FINITE ELEMENT METHODS FOR SECOND-ORDER ELLIPTIC INTERFACE PROBLEMS , 2014 .

[11]  Lars B. Wahlbin,et al.  Best approximation property in the W1∞ norm for finite element methods on graded meshes , 2011, Math. Comput..

[12]  Randall J. LeVeque,et al.  An Immersed Interface Method for Incompressible Navier-Stokes Equations , 2003, SIAM J. Sci. Comput..

[13]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[14]  D. Boffi,et al.  FINITE ELEMENT APPROACH TO IMMERSED BOUNDARY METHOD WITH DIFFERENT FLUID AND SOLID DENSITIES , 2011 .

[15]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[16]  Jean-Christophe Nave,et al.  A Correction Function Method for Poisson problems with interface jump conditions , 2010, J. Comput. Phys..

[17]  Erik Burman,et al.  Projection stabilization of Lagrange multipliers for the imposition of constraints on interfaces and boundaries , 2012, 1203.4116.

[18]  Mohamed Ben-Romdhane,et al.  Higher-Order Immersed Finite Element Spaces for Second-Order Elliptic Interface Problems with Quadratic Interface , 2014 .

[19]  Robert Dillon,et al.  Simulation of swimming organisms: coupling internal mechanics with external fluid dynamics , 2004, Computing in Science & Engineering.

[20]  Marcus Sarkis,et al.  A Finite Element Method for High-Contrast Interface Problems with Error Estimates Independent of Contrast , 2015, J. Sci. Comput..

[21]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[22]  J. Thomas Beale,et al.  ON THE ACCURACY OF FINITE DIFFERENCE METHODS FOR ELLIPTIC PROBLEMS WITH INTERFACES , 2006 .

[23]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[24]  Bo Li,et al.  Immersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions , 2007, SIAM J. Numer. Anal..

[25]  Liqun Wang,et al.  Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces , 2010, J. Comput. Phys..

[26]  John E. Dolbow,et al.  A robust Nitsche’s formulation for interface problems , 2012 .

[27]  Charles S. Peskin,et al.  Stability and Instability in the Computation of Flows with Moving Immersed Boundaries: A Comparison of Three Methods , 1992, SIAM J. Sci. Comput..

[28]  Ricardo H. Nochetto,et al.  Stability of the finite element Stokes projection in W1 , 2004 .

[29]  Xiaoming He,et al.  Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions , 2011 .

[30]  Peng Song,et al.  A weak formulation for solving elliptic interface problems without body fitted grid , 2013, J. Comput. Phys..

[31]  Johnny Guzmán,et al.  Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra , 2012, Math. Comput..

[32]  Erik Burman,et al.  Numerical Approximation of Large Contrast Problems with the Unfitted Nitsche Method , 2011 .

[33]  Eftychios Sifakis,et al.  ' s personal copy A second order virtual node method for elliptic problems with interfaces and irregular domains , 2010 .

[34]  Marcus Sarkis,et al.  On the accuracy of finite element approximations to a class of interface problems , 2015, Math. Comput..

[35]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .