Solution-processed ZnO-chemically converted graphene gas sensor

Abstract We report a solution-processed gas sensor based on vertically aligned ZnO nanorods (NRs) on a chemically converted graphene (CCG) film. The prepared sensor device effectively detected 2 ppm of H 2 S in oxygen at room temperature. A high sensitivity of the gas sensor resulted from the growth of highly dense vertical ZnO NRs on the CCG film with numerous tiny white dots on its surface, which may provide a sufficient number of sites for the nucleation and growth of the ZnO NRs. The adsorption of oxygen on the surface of the ZnO NRs was found to be crucial for obtaining an excellent gas sensing performance of the ZnO NRs-CCG sensor.