Modelling trait dependent speciation with Approximate Bayesian Computation

Phylogeny is the field of modelling the temporal discrete dynamics of speciation. Complex models can nowadays be studied using the Approximate Bayesian Computation approach which avoids likelihood ...

[1]  Emmanuel Paradis,et al.  ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..

[2]  K. Strimmer,et al.  Exploring the demographic history of DNA sequences using the generalized skyline plot. , 2001, Molecular biology and evolution.

[3]  Richard G FitzJohn,et al.  Quantitative traits and diversification. , 2010, Systematic biology.

[4]  Dwueng-Chwuan Jhwueng Statistical modeling for adaptive trait evolution in randomly evolving environment , 2018, 1808.05878.

[5]  J. Bruggeman,et al.  Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within‐species variation , 2017 .

[6]  Klaus Peter Schliep,et al.  phangorn: phylogenetic analysis in R , 2010, Bioinform..

[7]  F. Bokma Detection of punctuated equilibrium from molecular phylogenies , 2002 .

[8]  Simon P. Blomberg,et al.  Beyond Brownian motion and the Ornstein-Uhlenbeck process: Stochastic diffusion models for the evolution of quantitative characters , 2017, bioRxiv.

[9]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[10]  R. FitzJohn Diversitree: comparative phylogenetic analyses of diversification in R , 2012 .

[11]  T. F. Hansen,et al.  A Comparative Method for Studying Adaptation to a Randomly Evolving Environment , 2008, Evolution; international journal of organic evolution.

[12]  Clayton E Cressler,et al.  Detecting Adaptive Evolution in Phylogenetic Comparative Analysis Using the Ornstein-Uhlenbeck Model. , 2015, Systematic biology.

[13]  G. Merceron,et al.  mvmorph: an r package for fitting multivariate evolutionary models to morphometric data , 2015 .

[14]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[15]  Hideki Innan,et al.  Detecting Phenotypic Selection by Approximate Bayesian Computation in Phylogenetic Comparative Methods , 2014 .

[16]  Emal Pasarly Time , 2011, Encyclopedia of Evolutionary Psychological Science.

[17]  Hélène Morlon,et al.  RPANDA: an R package for macroevolutionary analyses on phylogenetic trees , 2016 .

[18]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[19]  T. Stadler On incomplete sampling under birth-death models and connections to the sampling-based coalescent. , 2009, Journal of theoretical biology.

[20]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[21]  R. Adamczak,et al.  CLT for Ornstein-Uhlenbeck branching particle system , 2011, 1111.4559.

[22]  Elena Conti,et al.  A General Model for Estimating Macroevolutionary Landscapes , 2018, Systematic biology.

[23]  B. M. Fulk MATH , 1992 .

[24]  Joseph Felsenstein,et al.  Maximum Likelihood and Minimum-Steps Methods for Estimating Evolutionary Trees from Data on Discrete Characters , 1973 .

[25]  F. Bokma Time, species, and separating their effects on trait variance in clades. , 2010, Systematic biology.

[26]  K. Bartoszek Quantifying the effects of anagenetic and cladogenetic evolution , 2013, bioRxiv.

[27]  Krzysztof Bartoszek,et al.  Phylogenetic confidence intervals for the optimal trait value , 2015, J. Appl. Probab..

[28]  Ingemar Kaj,et al.  The Ornstein-Uhlenbeck process with migration: evolution with interactions , 2016 .

[29]  Tanja Stadler,et al.  Fast likelihood calculation for multivariate Gaussian phylogenetic models with shifts. , 2019, Theoretical population biology.

[30]  Pietro Lio',et al.  Multi–omic analysis of signalling factors in inflammatory comorbidities , 2018, BMC Bioinformatics.

[31]  Amaury Lambert,et al.  A Unifying Comparative Phylogenetic Framework Including Traits Coevolving Across Interacting Lineages. , 2016, Systematic biology.

[32]  Hideitsu Hino,et al.  The YUIMA Project: A Computational Framework for Simulation and Inference of Stochastic Differential Equations , 2014 .

[33]  Michael J. Landis,et al.  Phylogenetic analysis using Lévy processes: finding jumps in the evolution of continuous traits. , 2013, Systematic biology.

[34]  Daniel Wegmann,et al.  Inference of Evolutionary Jumps in Large Phylogenies using Lévy Processes , 2016, bioRxiv.

[35]  Daniel Wegmann,et al.  FITTING MODELS OF CONTINUOUS TRAIT EVOLUTION TO INCOMPLETELY SAMPLED COMPARATIVE DATA USING APPROXIMATE BAYESIAN COMPUTATION , 2012, Evolution; international journal of organic evolution.

[36]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[37]  D. Robinson,et al.  Comparison of weighted labelled trees , 1979 .

[38]  M. Gutmann,et al.  Fundamentals and Recent Developments in Approximate Bayesian Computation , 2016, Systematic biology.

[39]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[40]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[41]  T. F. Hansen,et al.  A phylogenetic comparative method for studying multivariate adaptation. , 2012, Journal of theoretical biology.

[42]  P. Diggle,et al.  Monte Carlo Methods of Inference for Implicit Statistical Models , 1984 .

[43]  Sébastien Roch,et al.  Phase transition on the convergence rate of parameter estimation under an Ornstein–Uhlenbeck diffusion on a tree , 2014, Journal of mathematical biology.

[44]  Luke J. Harmon,et al.  GEIGER: investigating evolutionary radiations , 2008, Bioinform..

[45]  Peter E Midford,et al.  Estimating a binary character's effect on speciation and extinction. , 2007, Systematic biology.

[46]  A. King,et al.  Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution , 2004, The American Naturalist.

[47]  Lesley T Lancaster,et al.  Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. , 2011, Systematic biology.

[48]  K. Bartoszek The Laplace Motion in Phylogenetic Comparative Methods , 2014, 1403.1562.

[49]  Tanja Stadler,et al.  Simulating trees with a fixed number of extant species. , 2011, Systematic biology.

[50]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[51]  T. Stadler,et al.  Fast likelihood evaluation for multivariate phylogenetic comparative methods: the PCMBase R package , 2018, 1809.09014.