Adjoint-based anisotropic hp-adaptation for discontinuous Galerkin methods using a continuous mesh model

Abstract In this paper we propose an adjoint-based hp-adaptation method for conservation laws, and corresponding numerical schemes based on piecewise polynomial approximation spaces. The method uses a continuous mesh framework, similar to that proposed in [1] , where a global optimization scheme was formulated with respect to the error in the numerical solution, measured in any L q norm. The novelty of the present work is the extension to more general optimization targets. Here, any solution-dependent functional, which is compatible with an adjoint equation, may be the target of the continuous-mesh optimization. We present the rationale behind the formulation of the optimization problem, with particular emphasis on the continuous mesh model, and the relevant adjoint-based error estimate. Additionally we combine the adjoint-based error estimates with the polynomial optimization strategy from [2] to present a complete hp-adaptation method which shows exponential convergence in the target function. The h-only mesh adaptation strategy of this work has been presented as a conference proceeding earlier [3] . Numerical experiments are carried out to demonstrate the viability of the scheme.

[1]  D. Mavriplis Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes , 1997 .

[2]  Michael Woopen,et al.  Adjoint‐based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods , 2013, 1309.3649.

[3]  William F. Mitchell,et al.  A collection of 2D elliptic problems for testing adaptive grid refinement algorithms , 2013, Appl. Math. Comput..

[4]  Frédéric Alauzet,et al.  On the use of anisotropic a posteriori error estimators for the adaptative solution of 3D inviscid compressible flows , 2009 .

[5]  Ralf Hartmann,et al.  Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations , 2010, J. Comput. Phys..

[6]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error , 2011, SIAM J. Numer. Anal..

[7]  Ivo Babuška,et al.  The p - and h-p version of the finite element method, an overview , 1990 .

[8]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[9]  L. Formaggia,et al.  Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .

[10]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[11]  Frédéric Alauzet,et al.  Achievement of Global Second Order Mesh Convergence for Discontinuous Flows with Adapted Unstructured Meshes , 2007 .

[12]  Simona Perotto,et al.  An anisotropic a-posteriori error estimate for a convection-diffusion problem , 2001 .

[13]  Michael Woopen,et al.  A Unifying Computational Framework for Adaptive High-Order Finite Element Methods , 2015 .

[14]  Marco Picasso,et al.  An anisotropic adaptive finite element algorithm for transonic viscous flows around a wing , 2015 .

[15]  Ralf Hartmann,et al.  Anisotropic mesh refinement for discontinuous Galerkin methods in two‐dimensional aerodynamic flow simulations , 2008 .

[16]  Krzysztof J. Fidkowski,et al.  An anisotropic hp-adaptation framework for functional prediction , 2012 .

[17]  Georg May,et al.  Adjoint-based anisotropic mesh adaptation for Discontinuous Galerkin Methods Using a Continuous Mesh Model , 2017 .

[18]  Michael Woopen,et al.  Adjoint-based hp-adaptivity on anisotropic meshes for high-order compressible flow simulations , 2016 .

[19]  Vít Dolejší,et al.  Anisotropic hp-adaptive method based on interpolation error estimates in the Lq-norm☆ , 2014 .

[20]  Jens Markus Melenk,et al.  hp-Finite Element Methods for Singular Perturbations , 2002 .

[21]  Georg May,et al.  A continuous-mesh optimization technique for piecewise polynomial approximation on tetrahedral grids , 2018, 2018 Fluid Dynamics Conference.

[22]  Johan Larsson,et al.  Anisotropic grid-adaptation in large eddy simulations , 2017 .

[23]  Frédéric Alauzet High‐order methods and mesh adaptation for Euler equations , 2008 .

[24]  Johann Dahm,et al.  Toward Accurate, Efficient, and Robust Hybridized Discontinuous Galerkin Methods , 2017 .

[25]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[26]  Michael Woopen,et al.  A Comparison of Hybridized and Standard DG Methods for Target-Based hp-Adaptive Simulation of Compressible Flow , 2013, ArXiv.

[27]  Frédéric Alauzet,et al.  Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..

[28]  Stefano Giani,et al.  Anisotropic hp-adaptive discontinuous Galerkin finite element methods for compressible fluid flows. , 2001 .

[29]  Georg May,et al.  A Goal-Oriented High-Order Anisotropic Mesh Adaptation Using Discontinuous Galerkin Method for Linear Convection-Diffusion-Reaction Problems , 2019, SIAM J. Sci. Comput..

[30]  David L. Darmofal,et al.  An optimization-based framework for anisotropic simplex mesh adaptation , 2012, J. Comput. Phys..

[31]  Herbert Egger,et al.  A hybrid mixed discontinuous Galerkin finite-element method for convection–diffusion problems , 2010 .

[32]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part II: Validations and Applications , 2011, SIAM J. Numer. Anal..

[33]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..

[34]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[35]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[36]  William Gropp,et al.  CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences , 2014 .

[37]  Georg May,et al.  A continuous hp-mesh model for adaptive discontinuous Galerkin schemes☆ , 2018 .

[38]  Michael Woopen,et al.  Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme , 2015 .

[39]  Frédéric Alauzet,et al.  Unstructured anisotropic mesh adaptation for 3D RANS turbomachinery applications , 2019, AIAA Aviation 2019 Forum.

[40]  Leszek F. Demkowicz,et al.  A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..

[41]  Stefano Giani,et al.  An a-posteriori error estimate for hp-adaptive DG methods for convection-diffusion problems on anisotropically refined meshes , 2014, Comput. Math. Appl..

[42]  Georg May,et al.  Mesh Optimization for Discontinuous Galerkin Methods Using a Continuous Mesh Model , 2018, AIAA Journal.

[43]  Frédéric Alauzet,et al.  High-order sonic boom modeling based on adaptive methods , 2010, J. Comput. Phys..

[44]  Vít Dolejsí Anisotropic mesh adaptation technique for viscous flow simulation , 2001, J. Num. Math..

[45]  Frédéric Alauzet,et al.  Verification of Unstructured Grid Adaptation Components , 2019, AIAA Journal.

[46]  K. Fidkowski,et al.  Comparison of hybrid and standard discontinuous Galerkin methods in a mesh-optimisation setting , 2019, International Journal of Computational Fluid Dynamics.

[47]  Michael Woopen,et al.  A Hybridized Discontinuous Galerkin Method for Three-Dimensional Compressible Flow Problems , 2014 .