Scalable preparation of multiple-particle entangled states via the cavity input-output process

We propose schemes for generating multiple-atom entangled states and a multiple-photon Greenberger-Horne-Zeilinger state, respectively, based on the input-output relation of the cavity. The numerical simulations show that produced multiple-particle entangled states have high fidelity even if the atoms are not localized in the Lamb-Dicke regime. Some practical quantum noises, such as atomic spontaneous emission and output coupling inefficiency, only decrease the success probability but exert no influence on the fidelity of prepared multiple-particle entangled states. The successful probabilities of our protocols approach unity in the ideal case. In addition, no need for individually addressing keeps the schemes easy to implement from the experimental point of view.

[1]  Franco Nori,et al.  Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits. , 2006, Physical review letters.

[2]  Z. Zhou,et al.  One-step implementation of a multiqubit controlled-phase-flip gate (7 pages) , 2006 .

[3]  Shi-Biao Zheng,et al.  One-step synthesis of multiatom Greenberger-Horne-Zeilinger states. , 2001, Physical review letters.

[4]  Raymond Laflamme,et al.  NMR Greenberger–Horne–Zeilinger states , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[6]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[7]  Yoav Sagi Scheme for generating Greenberger-Horne-Zeilinger-type states of n photons , 2003 .

[8]  Cirac,et al.  Preparation of macroscopic superpositions in many-atom systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[9]  P. Bertet,et al.  Step-by-step engineered multiparticle entanglement , 2000, Science.

[10]  M. Kozuma,et al.  Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity. , 2002, Physical review letters.

[11]  Marek Zukowski,et al.  Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement. , 2003, Physical review letters.

[12]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[13]  Preparation of Greenberger-Horne-Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED , 2004 .

[14]  G. Rempe,et al.  Normal-mode spectroscopy of a single-bound-atom-cavity system. , 2004, Physical review letters.

[15]  Jinhyoung Lee,et al.  Greenberger-Horne-Zeilinger nonlocality in arbitrary even dimensions , 2006 .

[16]  Observation of the vacuum Rabi spectrum for one trapped atom. , 2004, Physical review letters.

[17]  Julia Kempe,et al.  Multiparticle entanglement and its applications to cryptography , 1999 .

[18]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[19]  Christoph Simon,et al.  Multiphoton entanglement concentration and quantum cryptography. , 2002, Physical review letters.

[20]  Yun-Feng Xiao,et al.  Universal quantum computation in decoherence-free subspace with neutral atoms. , 2006, Physical review letters.

[21]  Jaeyoon Cho,et al.  Generation of atomic cluster states through the cavity input-output process. , 2005, Physical review letters.

[22]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[23]  Thomas Legero,et al.  Quantum beat of two single photons. , 2004, Physical review letters.

[24]  Shi-Biao Zheng Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion , 2003, 1202.5384.

[25]  Nonlocal gate of quantum network via cavity quantum electrodynamics (4 pages) , 2005, quant-ph/0501125.

[26]  H. J. Kimble,et al.  Robust quantum gates on neutral atoms with cavity-assisted photon scattering , 2005 .

[27]  Guang-Can Guo,et al.  Multipartite entanglement preparation and quantum communication with atomic ensembles , 2005 .

[28]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[29]  Christoph Becher,et al.  Control and Measurement of Three-Qubit Entangled States , 2004, Science.

[30]  Ujjwal Sen,et al.  Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states , 2003 .

[31]  Axel Kuhn,et al.  Kuhn, Hennrich, and Rempe Reply to Comment on "Deterministic single-photon source for distributed quantum networking" , 2002 .

[32]  Shi-Biao Zheng,et al.  Generation of entangled states of multiple trapped ions in thermal motion , 2004 .

[33]  Thompson,et al.  Observation of normal-mode splitting for an atom in an optical cavity. , 1992, Physical review letters.

[34]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[35]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[36]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[37]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[38]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[39]  A. D. Boozer,et al.  Supplementary Information for Experimental Realization of a One-Atom Laser in the Regime of Strong Coupling , 2003 .

[40]  V. Scarani,et al.  Nonlocality of cluster states of qubits , 2004, quant-ph/0405119.

[41]  A. D. Boozer,et al.  Deterministic Generation of Single Photons from One Atom Trapped in a Cavity , 2004, Science.

[42]  Zheng-Fu Han,et al.  Realizing quantum controlled phase flip through cavity QED (5 pages) , 2004 .

[43]  H. J. Kimble,et al.  Trapping of Single Atoms in Cavity QED , 1999 .

[44]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[45]  X. Zou,et al.  Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay , 2003 .

[46]  G. Agarwal Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity , 1984 .

[47]  H J Kimble,et al.  State-insensitive cooling and trapping of single atoms in an optical cavity. , 2003, Physical review letters.

[48]  Dan F. Walls,et al.  MOTION OF A TWO-LEVEL ATOM IN AN OPTICAL CAVITY , 1997 .