A Bayesian approach for probabilistic streamline computation in uncertain flows

Streamline-based techniques play an important role in visualizing and analyzing uncertain steady vector fields. It is a challenging problem to generate accurate streamlines in uncertain vector fields due to the global uncertainty transportation. In this work, we present a novel probabilistic method for streamline computation on uncertain steady vector fields using a Bayesian framework. In our framework, a streamline is modeled as a state space model which captures the spatial coherence of integration steps and uncertainty in local distributions using the conditional prior density and the likelihood function. To approximate the posterior distribution for all the possible traces originating from a given seed position, a set of weighted samples are iteratively updated from which streamlines with higher likelihood can be derived. We qualitatively and quantitatively compare our method with alternative methods on different types of flow field data sets. Our method can generate possible streamlines with higher certainty and hence more accurate flow traces.

[1]  Robert Michael Kirby,et al.  Display of vector fields using a reaction-diffusion model , 2004, IEEE Visualization 2004.

[2]  Alex T. Pang,et al.  UFLOW: visualizing uncertainty in fluid flow , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[3]  Christian Rössl,et al.  Streamline Embedding for 3D Vector Field Exploration , 2012, IEEE Transactions on Visualization and Computer Graphics.

[4]  Valerio Pascucci,et al.  Analysis of large-scale scalar data using hixels , 2011, 2011 IEEE Symposium on Large Data Analysis and Visualization.

[5]  Carl-Fredrik Westin,et al.  Regularized Stochastic White Matter Tractography Using Diffusion Tensor MRI , 2002, MICCAI.

[6]  Valerio Pascucci,et al.  Gaussian mixture model based volume visualization , 2012, IEEE Symposium on Large Data Analysis and Visualization (LDAV).

[7]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[8]  Craig M. Wittenbrink,et al.  Glyphs for visualizing uncertainty in environmental vector fields , 1995 .

[9]  Carl-Fredrik Westin,et al.  A Bayesian approach for stochastic white matter tractography , 2006, IEEE Transactions on Medical Imaging.

[10]  Hans-Christian Hege,et al.  Uncertain 2D Vector Field Topology , 2010, Comput. Graph. Forum.

[11]  R. Fisher Dispersion on a sphere , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  Cong Wang,et al.  Scalable computation of distributions from large scale data sets , 2012, IEEE Symposium on Large Data Analysis and Visualization (LDAV).

[13]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[14]  Guido Gerig,et al.  Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling , 2009, Medical Image Anal..

[15]  Han-Wei Shen,et al.  Uncertainty modeling and error reduction for pathline computation in time-varying flow fields , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[16]  Ralf P. Botchen,et al.  INTERACTIVE VISUALIZATION OF UNCERTAINTY IN FLOW FIELDS USING TEXTURE-BASED TECHNIQUES , .

[17]  E. Bullmore,et al.  Formal characterization and extension of the linearized diffusion tensor model , 2005, Human brain mapping.

[18]  Colin Studholme,et al.  Probabilistic tractography using Q-ball imaging and particle filtering: Application to adult and in-utero fetal brain studies , 2013, Medical Image Anal..

[19]  Holger Theisel,et al.  Uncertain topology of 3D vector fields , 2011, 2011 IEEE Pacific Visualization Symposium.

[20]  M. Sheelagh T. Carpendale,et al.  Exploration of uncertainty in bidirectional vector fields , 2008, Electronic Imaging.

[21]  Ron Kikinis,et al.  White Matter Tractography Using Sequential Importance Sampling , 2002 .

[22]  Daniel Weiskopf,et al.  Texture-based visualization of uncertainty in flow fields , 2005, VIS 05. IEEE Visualization, 2005..

[23]  Valerio Pascucci,et al.  Flow Visualization with Quantified Spatial and Temporal Errors Using Edge Maps , 2012, IEEE Transactions on Visualization and Computer Graphics.

[24]  Guido Gerig,et al.  Towards a shape model of white matter fiber bundles using diffusion tensor MRI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[25]  J. Marsden,et al.  Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows , 2005 .