Biomechanics of Vertebral Bone

This chapter discusses the biomechanics of human vertebral trabecular bone. It also describes aging, disease, and repetitive loading. This chapter addresses the behavior of the whole vertebra, including discussion of the role of the cortical shell, intervertebral disc, and posterior elements. Detailed knowledge of the biomechanical behavior of vertebral bone is necessary in order to design robust implants. Design of orthopedic implants for the spine is particularly challenging because vertebral trabecular bone is so weak and the cortices are so thin. As a result, failure of the bone-implant system often originates in the bone. The problem is compounded because the bone properties vary so much across individuals and over time and with disease. The development of minimally invasive surgical repair techniques for vertebral fractures such as vertebroplasty and kyphoplasty also invites biomechanical analysis of vertebral trabecular bone and the whole vertebral body in order to refine those procedures. Subsequently, computational models are in use to refine and indeed develop designs of new implants for the spine.

[1]  J S Thomsen,et al.  Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. , 1999, Bone.

[2]  M. Bouxsein,et al.  Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA , 1995, Calcified Tissue International.

[3]  G. Baroud,et al.  Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration , 2004 .

[4]  Van C. Mow,et al.  Is the Nucleus Pulposus a Solid or a Fluid? Mechanical Behaviors of the Nucleus Pulposus of the Human Intervertebral Disc , 1996, Spine.

[5]  S. Cummings,et al.  Age‐related decrements in bone mineral density in women over 65 , 1992, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[6]  本郷 道生 Surface Strain Distribution on Thoracic and Lumbar Vertebrae Under Axial Compression , 1998 .

[7]  Tony M Keaveny,et al.  Relationship Between Axial and Bending Behaviors of the Human Thoracolumbar Vertebra , 2004, Spine.

[8]  L. S. Matthews,et al.  The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. , 1983, Journal of biomechanics.

[9]  M. Kleerekoper,et al.  Reversal of vertebral deformities in osteoporosis: Measurement error or “rebound”? , 1994, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[10]  A. M. Ahmed,et al.  Some static mechanical properties of the lumbar intervertebral joint, intact and injured. , 1982, Journal of biomechanical engineering.

[11]  A. Leblanc,et al.  Regional Variation in Vertebral Bone Density and Trabecular Architecture Are Influenced by Osteoarthritic Change and Osteoporosis , 1997, Spine.

[12]  F. Eckstein,et al.  Determinants and heterogeneity of mechanical competence throughout the thoracolumbar spine of elderly women and men. , 2004, Bone.

[13]  Volker Kuhn,et al.  Can Novel Clinical Densitometric Techniques Replace or Improve DXA in Predicting Bone Strength in Osteoporosis at the Hip and Other Skeletal Sites? , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[14]  S. Ott Methods of determining bone mass , 1991, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[15]  W. Edwards,et al.  Structural features and thickness of the vertebral cortex in the thoracolumbar spine. , 2001, Spine.

[16]  L. Mosekilde,et al.  Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. , 1987, Bone.

[17]  N Yoganandan,et al.  Functional biomechanics of the thoracolumbar vertebral cortex. , 1988, Clinical biomechanics.

[18]  L. Mosekilde,et al.  Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength. , 1986, Bone.

[19]  S. Greenspan,et al.  Classification of osteoporosis in the elderly is dependent on site-specific analysis , 1996, Calcified Tissue International.

[20]  G. Pharr,et al.  Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone. , 1999, Journal of biomedical materials research.

[21]  P. Brinckmann,et al.  Prediction of the Compressive Strength of Human Lumbar Vertebrae , 1989, Spine.

[22]  G. Pharr,et al.  The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. , 1999, Journal of biomechanics.

[23]  D P Fyhrie,et al.  Intracortical remodeling in adult rat long bones after fatigue loading. , 1998, Bone.

[24]  M. Adams,et al.  The Mechanical Function of the Lumbar Apophyseal Joints , 1983, Spine.

[25]  P. Rüegsegger,et al.  The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. , 1999, Bone.

[26]  J L Kelsey,et al.  Risk factors for falls as a cause of hip fracture in women. The Northeast Hip Fracture Study Group. , 1991, The New England journal of medicine.

[27]  T. Keaveny,et al.  Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. , 2003, Bone.

[28]  L. Nolte,et al.  Load-Sharing Characteristics of Stabilized Lumbar Spine Segments , 2000, Spine.

[29]  T. Keaveny,et al.  Dependence of trabecular damage on mechanical strain , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[30]  D S McNally,et al.  'Stress' distributions inside intervertebral discs. The effects of age and degeneration. , 1996, The Journal of bone and joint surgery. British volume.

[31]  W. Hayes,et al.  Prediction of vertebral body compressive fracture using quantitative computed tomography. , 1985, The Journal of bone and joint surgery. American volume.

[32]  S. Bentzen,et al.  The predictive value of quantitative computed tomography for vertebral body compressive strength and ash density. , 1989, Bone.

[33]  E. Myers,et al.  Biomechanics of osteoporosis and vertebral fracture. , 1997, Spine.

[34]  E. Radin,et al.  Bone remodeling in response to in vivo fatigue microdamage. , 1985, Journal of biomechanics.

[35]  M. Hongo,et al.  Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fractures. , 1999, Spine.

[36]  H. Skinner,et al.  Prediction of femoral fracture load using automated finite element modeling. , 1997, Journal of biomechanics.

[37]  T. Keaveny,et al.  Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone , 2002, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[38]  Michael A. Adams,et al.  'Stress' distributions inside intervertebral discs , 1996 .

[39]  Thomas R. Oxland,et al.  Mapping the Structural Properties of the Lumbosacral Vertebral Endplates , 2001, Spine.

[40]  M Mahesh,et al.  The Biomechanics of Lumbar Facetectomy Under Compression‐Flexion , 1992, Spine.

[41]  P Kurowski,et al.  The Relationship of Degeneration of the Intervertebral Disc to Mechanical Loading Conditions on Lumbar Vertebrae , 1986, Spine.

[42]  B. Vernon‐roberts,et al.  Degenerative changes in the intervertebral discs of the lumbar spine and their sequelae. , 1977, Rheumatology and rehabilitation.

[43]  K. Singer,et al.  Ex vivo estimation of thoracolumbar vertebral body compressive strength: The relative contributions of bone densitometry and vertebral morphometry , 2005, Osteoporosis International.

[44]  P J Prendergast,et al.  Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis. , 1996, Journal of biomechanical engineering.

[45]  M Lengsfeld,et al.  Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation. , 1998, Medical engineering & physics.

[46]  M. Adams,et al.  The Strength in Anterior Bending of Lumbar Intervertebral Discs , 1994, Spine.

[47]  Staffan Eriksson,et al.  Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography , 1989, Calcified Tissue International.

[48]  T. Hansson,et al.  The Bone Mineral Content and Ultimate Compressive Strength of Lumbar Vertebrae , 1980, Spine.

[49]  T. Keaveny,et al.  Cortical and Trabecular Load Sharing in the Human Vertebral Body , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[50]  H. Ranu,et al.  Pressure distribution under an intervertebral disc--an experimental study. , 1979, Journal of biomechanics.

[51]  W. Ambrosius,et al.  Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. , 1997, Bone.

[52]  B. Hasegawa,et al.  Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. , 1991, Radiology.

[53]  M. V. Van Natta,et al.  Epidemiology of Hip Fractures Among the Elderly: Risk Factors for Fracture Type , 1995, Clinical orthopaedics and related research.

[54]  Mechanical behavior of human trabecular bone after overloading , 1999, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[55]  M. Hahn,et al.  Microcallus formations of the cancellous bone: A quantitative analysis of the human spine , 1995, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[56]  T. Keaveny,et al.  Yield strain behavior of trabecular bone. , 1998, Journal of biomechanics.

[57]  L. Mosekilde Vertebral structure and strengthIn vivo andIn vitro , 2005, Calcified Tissue International.

[58]  P. Brinckmann,et al.  Fatigue fracture of human lumbar vertebrae. , 1988, Clinical biomechanics.

[59]  D P Fyhrie,et al.  In vivo trabecular microcracks in human vertebral bone. , 1996, Bone.

[60]  R. Eastell,et al.  Classification of vertebral fractures , 1991, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[61]  C. Cooper,et al.  Perspective how many women have osteoporosis? , 1992, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[62]  D. Burr,et al.  Bone Microdamage and Skeletal Fragility in Osteoporotic and Stress Fractures , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[63]  B. Snyder,et al.  Noninvasive Imaging Predicts Failure Load of the Spine with Simulated Osteolytic Defects*† , 2000, The Journal of bone and joint surgery. American volume.

[64]  L. Melton,et al.  Medical Expenditures for the Treatment of Osteoporotic Fractures in the United States in 1995: Report from the National Osteoporosis Foundation , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[65]  D. Bates,et al.  Clinical use of bone densitometry: clinical applications. , 2002, JAMA.

[66]  M. Panjabi,et al.  A Study of the Compressive Properties of Lumbar Vertebral Trabeculae: Effects of Tissue Characteristics , 1987, Spine.

[67]  N. Langrana,et al.  Role of Ligaments and Facets in Lumbar Spinal Stability , 1995, Spine.

[68]  T. Hansson,et al.  Microcalluses of the Trabeculae in Lumbar Vertebrae and Their Relation to the Bone Mineral Content , 1981, Spine.

[69]  S. Cummings,et al.  Clinical use of bone densitometry: scientific review. , 2002, JAMA.

[70]  S. Goldstein,et al.  Femoral strength is better predicted by finite element models than QCT and DXA. , 1999, Journal of biomechanics.

[71]  M. Kleerekoper,et al.  Vertebral fracture or vertebral deformity? , 2004, Calcified Tissue International.

[72]  M. Adams,et al.  Intervertebral Disc Degeneration Can Lead to “Stress-Shielding” of the Anterior Vertebral Body: A Cause of Osteoporotic Vertebral Fracture? , 2004, Spine.

[73]  J A McGeough,et al.  Age-Related Changes in the Compressive Strength of Cancellous Bone. The Relative Importance of Changes in Density and Trabecular Architecture* , 1997, The Journal of bone and joint surgery. American volume.

[74]  T Hansson,et al.  The Relation Between Bone Mineral Content, Experimental Compression Fractures, and Disc Degeneration in Lumbar Vertebrae , 1981, Spine.

[75]  W H Harris,et al.  Limitations of the continuum assumption in cancellous bone. , 1988, Journal of biomechanics.

[76]  R. Huiskes,et al.  Stress distribution changes in bovine vertebrae just below the endplate after sustained loading. , 2001, Clinical biomechanics.

[77]  R. Rose,et al.  A possible mechanism of Wolff's law: trabecular microfractures. , 1973, Archives internationales de physiologie et de biochimie.

[78]  S. Rockoff,et al.  The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae , 2005, Calcified Tissue Research.

[79]  Harry K. Genant,et al.  A comparison of morphometric definitions of vertebral fracture , 1991 .

[80]  T. Brown,et al.  Mechanical property distributions in the cancellous bone of the human proximal femur. , 1980, Acta orthopaedica Scandinavica.

[81]  H. Tsuji,et al.  Water Diffusion Pathway, Swelling Pressure, and Biomechanical Properties of the Intervertebral Disc During Compression Load , 1989, Spine.

[82]  G Van der Perre,et al.  Prediction of Vertebral Strength In Vitro by Spinal Bone Densitometry and Calcaneal Ultrasound , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[83]  J L Lewis,et al.  Experimental measurement of ligament force, facet force, and segment motion in the human lumbar spine. , 1993, Journal of biomechanics.

[84]  E. Gelsema,et al.  Unraveling the Role of Structure and Density in Determining Vertebral Bone Strength , 1997, Calcified Tissue International.

[85]  W C Hayes,et al.  Computed tomography‐based finite element analysis predicts failure loads and fracture patterns for vertebral sections , 1998, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[86]  T. Keaveny,et al.  Dependence of yield strain of human trabecular bone on anatomic site. , 2001, Journal of biomechanics.

[87]  D. Cody,et al.  Correlations Between Vertebral Regional Bone Mineral Density (rBMD) and Whole Bone Fracture Load , 1991, Spine.

[88]  J. Urban,et al.  Swelling Pressure of the Lumbar Intervertebral Discs: Influence of Age, Spinal Level, Composition, and Degeneration , 1988, Spine.

[89]  M M Panjabi,et al.  Regional Variations in the Compressive Properties of Lumbar Vertebral Trabeculae: Effects of Disc Degeneration , 1989, Spine.

[90]  Y. K. Liu,et al.  Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. , 1978, The Journal of bone and joint surgery. American volume.

[91]  T M Keaveny,et al.  Biomechanical consequences of an isolated overload on the human vertebral body , 2000, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[92]  K. Tanner,et al.  Fatigue failure of cancellous bone: a possible cause of implant migration and loosening , 1997 .

[93]  B. Manthey,et al.  Three-dimensional confocal images of microdamage in cancellous bone. , 1998, Bone.

[94]  P. Rüegsegger,et al.  Prevalence of Trabecular Microcallus Formation in the Vertebral Body and the Femoral Neck , 1997, Calcified Tissue International.

[95]  K Kaneda,et al.  The Mechanical Properties of the Human L4–5 Functional Spinal Unit During Cyclic Loading: The Structural Effects of the Posterior Elements , 1992, Spine.

[96]  T. Keaveny,et al.  Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[97]  R. Ziegler,et al.  What is a vertebral fracture? , 1996, Bone.

[98]  T M Keaveny,et al.  Nonlinear behavior of trabecular bone at small strains. , 2001, Journal of biomechanical engineering.

[99]  K.-P. Schmitz,et al.  Noninvasive Assessment of Stiffness and Failure Load of Human Vertebrae from CT-Data. Nichtinvasive Abschätzung von Steifigkeit und Versagenslast von osteoporotischen Wirbelkörpern nach CT-Daten , 1998 .

[100]  A Shirazi-Adl,et al.  A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. , 1986, Journal of biomechanics.

[101]  A. Schultz,et al.  Mechanical Properties of Human Lumbar Spine Motion Segments—Part I: Responses in Flexion, Extension, Lateral Bending, and Torsion , 1979 .

[102]  S A Goldstein,et al.  A comparison of the fatigue behavior of human trabecular and cortical bone tissue. , 1992, Journal of biomechanics.

[103]  S. Cummings,et al.  Does estimating volumetric bone density of the femoral neck improve the prediction of hip fracture? A prospective study , 1994, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[104]  K. Singer,et al.  The relationship between bone mineral density, vertebral body shape and spinal curvature in the elderly thoracolumbar spine: an in vitro study. , 1994, The British journal of radiology.

[105]  T. Keller,et al.  Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading , 1987, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[106]  T. Bauer,et al.  The pathology of total joint arthroplasty , 1999, Skeletal Radiology.

[107]  L. Mosekilde,et al.  Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. , 1990, Bone.

[108]  A. Burstein,et al.  The elastic and ultimate properties of compact bone tissue. , 1975, Journal of biomechanics.

[109]  Similarity in the fatigue behavior of trabecular bone across site and species. , 2004 .

[110]  P Brinckmann,et al.  Measurement of the Distribution of Axial Stress on the End-Plate of the Vertebral Body , 1981, Spine.

[111]  R. Eastell,et al.  Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis , 2004, Osteoporosis International.

[112]  T. Keaveny,et al.  Uniaxial yield strains for bovine trabecular bone are isotropic and asymmetric , 1999, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[113]  Fran Harris,et al.  Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. , 2002, The American journal of medicine.

[114]  D B Burr,et al.  Increased intracortical remodeling following fatigue damage. , 1993, Bone.

[115]  S J Hollister,et al.  A global relationship between trabecular bone morphology and homogenized elastic properties. , 1998, Journal of biomechanical engineering.

[116]  J. Ahn,et al.  Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty , 2004, Acta radiologica.

[117]  S. Stover,et al.  Residual strength of equine bone is not reduced by intense fatigue loading: implications for stress fracture. , 1997, Journal of biomechanics.

[118]  L. Nolte,et al.  The Effect of Cement Augmentation on the Load Transfer in an Osteoporotic Functional Spinal Unit: Finite-Element Analysis , 2003, Spine.

[119]  W. Hayes,et al.  Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate. , 1994, Bone.

[120]  W C Hayes,et al.  Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. , 1994, Journal of biomechanics.

[121]  M M Panjabi,et al.  Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. , 1994, The Journal of bone and joint surgery. American volume.

[122]  T. Keaveny,et al.  Finite Element Modeling of the Human Thoracolumbar Spine , 2003, Spine.

[123]  S A Goldstein,et al.  Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density. , 1990, Journal of biomechanics.

[124]  D. Felson,et al.  Bone mineral density in elderly men and women: Results from the framingham osteoporosis study , 1992 .

[125]  A B Schultz,et al.  Load displacement behavior of the human Lumbo‐sacral joint , 1987, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[126]  Michael A. Adams,et al.  Posture and the compressive strength of the lumbar spine , 1994 .

[127]  W C Hayes,et al.  Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body , 1997, Spine.

[128]  P. Dolan,et al.  The clinical biomechanics award paper 1993 Posture and the compressive strength of the lumbar spine. , 1994, Clinical biomechanics.

[129]  D Vashishth,et al.  In vivo diffuse damage in human vertebral trabecular bone. , 2000, Bone.

[130]  F Eckstein,et al.  Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. , 2002, Bone.

[131]  J. Galante,et al.  Physical properties of trabecular bone , 2005, Calcified Tissue Research.

[132]  V C Mow,et al.  Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[133]  J H Keyak,et al.  Three-dimensional finite element modeling of a cervical vertebra: an investigation of burst fracture mechanism. , 1994, Journal of spinal disorders.

[134]  J Pearson,et al.  Prevalent Vertebral Deformities Predict Hip Fractures and New Vertebral Deformities but Not Wrist Fractures , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[135]  Y. K. Liu,et al.  Fatigue Response of Lumbar Intervertebral Joints Under Axial Cyclic Loading , 1983, Spine.

[136]  C. Cooper,et al.  Incidence of clinically diagnosed vertebral fractures: A population‐based study in rochester, minnesota, 1985‐1989 , 1992, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[137]  J H Keyak,et al.  Automated three-dimensional finite element modelling of bone: a new method. , 1990, Journal of biomedical engineering.

[138]  D P Fyhrie,et al.  Failure mechanisms in human vertebral cancellous bone. , 1994, Bone.

[139]  K. Singer,et al.  Prediction of thoracic and lumbar vertebral body compressive strength: correlations with bone mineral density and vertebral region. , 1995, Bone.

[140]  M. Adams,et al.  Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry , 1992, Spine.

[141]  A Shirazi-Adl,et al.  Biomechanics of the Lumbar Spine in Sagittal/Lateral Moments , 1994, Spine.

[142]  B S Myers,et al.  An improved method for finite element mesh generation of geometrically complex structures with application to the skullbase. , 1997, Journal of biomechanics.

[143]  H. Genant,et al.  Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. , 2002, Medical physics.

[144]  N L Fazzalari,et al.  Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. , 1998, Bone.

[145]  R. Martin,et al.  Toward a unifying theory of bone remodeling. , 2000, Bone.

[146]  T M Keaveny,et al.  Localized damage in vertebral bone is most detrimental in regions of high strain energy density. , 1999, Journal of biomechanical engineering.

[147]  C. Turner,et al.  Yield behavior of bovine cancellous bone. , 1989, Journal of biomechanical engineering.

[148]  H Weinans,et al.  Osteoporosis Changes the Amount of Vertebral Trabecular Bone at Risk of Fracture but Not the Vertebral Load Distribution , 2001, Spine.

[149]  Ego Seeman,et al.  Changes in bone mineral density explain little of the reduction in vertebral or nonvertebral fracture risk with anti-resorptive therapy. , 2004, Bone.