Polyline‐sourced Geodesic Voronoi Diagrams on Triangle Meshes

This paper studies the Voronoi diagrams on 2‐manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi diagrams or GVDs), which have polyline generators. We show that our general setting leads to situations more complicated than conventional 2D Euclidean Voronoi diagrams as well as point‐source based GVDs, since a typical bisector contains line segments, hyperbolic segments and parabolic segments. To tackle this challenge, we introduce a new concept, called local Voronoi diagram (LVD), which is a combination of additively weighted Voronoi diagram and line‐segment Voronoi diagram on a mesh triangle. We show that when restricting on a single mesh triangle, the GVD is a subset of the LVD and only two types of mesh triangles can contain GVD edges. Based on these results, we propose an efficient algorithm for constructing the GVD with polyline generators. Our algorithm runs in O(nNlogN) time and takes O(nN) space on an n‐face mesh with m generators, where N = max{m, n}. Computational results on real‐world models demonstrate the efficiency of our algorithm.

[1]  Deok-Soo Kim,et al.  The Duality of Geodesic Voronoi/Delaunay Diagrams For An Intrinsic Discrete Laplace-Beltrami Operator on Simplicial Surfaces , 2014, CCCG.

[2]  Ying He,et al.  Saddle vertex graph (SVG) , 2013, ACM Trans. Graph..

[3]  Yong-Jin Liu,et al.  Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures , 2013, Comput. Aided Des..

[4]  Shi-Qing Xin,et al.  Efficiently computing geodesic offsets on triangle meshes by the extended Xin-Wang algorithm , 2011, Comput. Aided Des..

[5]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[6]  Otfried Cheong,et al.  Voronoi diagrams on the spher , 2002, Comput. Geom..

[7]  Jean-Daniel Boissonnat,et al.  Constructing Intrinsic Delaunay Triangulations of Submanifolds , 2013, ArXiv.

[8]  Marta Fort,et al.  Generalized Source Shortest Paths on Polyhedral Surfaces , 2007 .

[9]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[10]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[11]  Lin Lu,et al.  Centroidal Voronoi Tessellation of Line Segments and Graphs , 2012, Comput. Graph. Forum.

[12]  Kai Tang,et al.  The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces , 2013, Inf. Process. Lett..

[13]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[14]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[15]  Shi-Min Hu,et al.  Handling degenerate cases in exact geodesic computation on triangle meshes , 2007, The Visual Computer.

[16]  Chee-Keng Yap,et al.  A geometric consistency theorem for a symbolic perturbation scheme , 1988, SCG '88.

[17]  Shi-Qing Xin,et al.  Constant-time O(1) all pairs geodesic distance query on triangle meshes , 2011, SA '11.

[18]  Erin W. Chambers,et al.  Medial Residues of Piecewise Linear Manifolds , 2013, CCCG.

[19]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Deok-Soo Kim,et al.  A cocktail algorithm for planar bézier curve intersections , 1998, Comput. Aided Des..

[21]  David Bommes,et al.  Accurate Computation of Geodesic Distance Fields for Polygonal Curves on Triangle Meshes , 2007, VMV.

[22]  J. Sethian,et al.  Fast Voronoi Diagrams and Offsets on Triangulated Surfaces , 2000 .

[23]  Toshihide Ibaraki,et al.  A cautious scheduler for multistep transactions , 2005, Algorithmica.

[24]  Franz-Erich Wolter,et al.  Geodesic Voronoi diagrams on parametric surfaces , 1997, Proceedings Computer Graphics International.

[25]  Charles S. Peskin,et al.  On the construction of the Voronoi mesh on a sphere , 1985 .

[26]  N. Takayama,et al.  Construction of Voronoi Diagram on the Upper Half-Plane (Special Section on Discrete Mathematics and Its Applications) , 1996 .

[27]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[28]  Deok-Soo Kim,et al.  Representing the Voronoi diagram of a simple polygon using rational quadratic Bézier curves , 1995, Comput. Aided Des..

[29]  Pat Hanrahan,et al.  GRAMPS: A programming model for graphics pipelines , 2009, ACM Trans. Graph..

[30]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[31]  Alfred M. Bruckstein,et al.  Multivalued distance maps for motion planning on surfaces with moving obstacles , 1998, IEEE Trans. Robotics Autom..

[32]  LiuYong-Jin,et al.  Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces , 2011 .

[33]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.