Polyline‐sourced Geodesic Voronoi Diagrams on Triangle Meshes
暂无分享,去创建一个
Jinyan Li | Qian Sun | Yong-Jin Liu | Ying He | Chunxu Xu | Ying He | Yong-Jin Liu | Qian Sun | Chunxu Xu | Jinyan Li
[1] Deok-Soo Kim,et al. The Duality of Geodesic Voronoi/Delaunay Diagrams For An Intrinsic Discrete Laplace-Beltrami Operator on Simplicial Surfaces , 2014, CCCG.
[2] Ying He,et al. Saddle vertex graph (SVG) , 2013, ACM Trans. Graph..
[3] Yong-Jin Liu,et al. Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures , 2013, Comput. Aided Des..
[4] Shi-Qing Xin,et al. Efficiently computing geodesic offsets on triangle meshes by the extended Xin-Wang algorithm , 2011, Comput. Aided Des..
[5] Franziska Hoffmann,et al. Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .
[6] Otfried Cheong,et al. Voronoi diagrams on the spher , 2002, Comput. Geom..
[7] Jean-Daniel Boissonnat,et al. Constructing Intrinsic Delaunay Triangulations of Submanifolds , 2013, ArXiv.
[8] Marta Fort,et al. Generalized Source Shortest Paths on Polyhedral Surfaces , 2007 .
[9] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[10] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[11] Lin Lu,et al. Centroidal Voronoi Tessellation of Line Segments and Graphs , 2012, Comput. Graph. Forum.
[12] Kai Tang,et al. The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces , 2013, Inf. Process. Lett..
[13] Joseph S. B. Mitchell,et al. The Discrete Geodesic Problem , 1987, SIAM J. Comput..
[14] Chenglei Yang,et al. On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.
[15] Shi-Min Hu,et al. Handling degenerate cases in exact geodesic computation on triangle meshes , 2007, The Visual Computer.
[16] Chee-Keng Yap,et al. A geometric consistency theorem for a symbolic perturbation scheme , 1988, SCG '88.
[17] Shi-Qing Xin,et al. Constant-time O(1) all pairs geodesic distance query on triangle meshes , 2011, SA '11.
[18] Erin W. Chambers,et al. Medial Residues of Piecewise Linear Manifolds , 2013, CCCG.
[19] J A Sethian,et al. Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[20] Deok-Soo Kim,et al. A cocktail algorithm for planar bézier curve intersections , 1998, Comput. Aided Des..
[21] David Bommes,et al. Accurate Computation of Geodesic Distance Fields for Polygonal Curves on Triangle Meshes , 2007, VMV.
[22] J. Sethian,et al. Fast Voronoi Diagrams and Offsets on Triangulated Surfaces , 2000 .
[23] Toshihide Ibaraki,et al. A cautious scheduler for multistep transactions , 2005, Algorithmica.
[24] Franz-Erich Wolter,et al. Geodesic Voronoi diagrams on parametric surfaces , 1997, Proceedings Computer Graphics International.
[25] Charles S. Peskin,et al. On the construction of the Voronoi mesh on a sphere , 1985 .
[26] N. Takayama,et al. Construction of Voronoi Diagram on the Upper Half-Plane (Special Section on Discrete Mathematics and Its Applications) , 1996 .
[27] Keenan Crane,et al. Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.
[28] Deok-Soo Kim,et al. Representing the Voronoi diagram of a simple polygon using rational quadratic Bézier curves , 1995, Comput. Aided Des..
[29] Pat Hanrahan,et al. GRAMPS: A programming model for graphics pipelines , 2009, ACM Trans. Graph..
[30] Steven J. Gortler,et al. Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..
[31] Alfred M. Bruckstein,et al. Multivalued distance maps for motion planning on surfaces with moving obstacles , 1998, IEEE Trans. Robotics Autom..
[32] LiuYong-Jin,et al. Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces , 2011 .
[33] Yijie Han,et al. Shortest paths on a polyhedron , 1990, SCG '90.