A conic scalarization method in multi-objective optimization

This paper presents the conic scalarization method for scalarization of nonlinear multi-objective optimization problems. We introduce a special class of monotonically increasing sublinear scalarizing functions and show that the zero sublevel set of every function from this class is a convex closed and pointed cone which contains the negative ordering cone. We introduce the notion of a separable cone and show that two closed cones (one of them is separable) having only the vertex in common can be separated by a zero sublevel set of some function from this class. It is shown that the scalar optimization problem constructed by using these functions, enables to characterize the complete set of efficient and properly efficient solutions of multi-objective problems without convexity and boundedness conditions. By choosing a suitable scalarizing parameter set consisting of a weighting vector, an augmentation parameter, and a reference point, decision maker may guarantee a most preferred efficient or properly efficient solution.

[1]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[2]  Andrzej P. Wierzbicki,et al.  Reference Point Methods in Vector Optimization and Decision Support , 1998 .

[3]  Tugba Saraç,et al.  A multi-objective programming approach to 1.5-dimensional assortment problem , 2007, Eur. J. Oper. Res..

[4]  Lorraine R. Gardiner,et al.  A comparison of two reference point methods in multiple objective mathematical programming , 2003, Eur. J. Oper. Res..

[5]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[6]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[7]  Rafail N. Gasimov,et al.  The analytic hierarchy process and multiobjective 0-1 faculty course assignment , 2004, Eur. J. Oper. Res..

[8]  Panos M. Pardalos,et al.  A survey of recent developments in multiobjective optimization , 2007, Ann. Oper. Res..

[9]  Andrzej P. Wierzbicki,et al.  Aspiration Based Decision Support Systems , 1989 .

[10]  Alexander M. Rubinov,et al.  Scalarization and Nonlinear Scalar Duality for Vector Optimization with Preferences that are not necessarily a Pre-order Relation , 2004, J. Glob. Optim..

[11]  Marc Roubens,et al.  Multiple criteria decision making , 1994 .

[12]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[13]  Refail Kasimbeyli,et al.  A Nonlinear Cone Separation Theorem and Scalarization in Nonconvex Vector Optimization , 2009, SIAM J. Optim..

[14]  Alexander M. Rubinov,et al.  On augmented Lagrangians for Optimization Problems with a Single Constraint , 2004, J. Glob. Optim..

[15]  Johannes Jahn,et al.  Scalarization in vector optimization , 1984, Math. Program..

[16]  Refail Kasimbeyli Radial epiderivatives and set-valued optimization , 2009 .

[17]  Kaisa Miettinen,et al.  On scalarizing functions in multiobjective optimization , 2002, OR Spectr..

[18]  Refail Kasimbeyli,et al.  Multiobjective Programming and Multiattribute Utility Functions in Portfolio Optimization , 2009, INFOR Inf. Syst. Oper. Res..

[19]  M. I. Henig Proper efficiency with respect to cones , 1982 .

[20]  Kathrin Klamroth,et al.  Introducing oblique norms into multiple criteria programming , 2002, J. Glob. Optim..

[21]  Panos M. Pardalos,et al.  Advances in multicriteria analysis , 1995 .

[22]  Panos M. Pardalos,et al.  Handbook of Multicriteria Analysis , 2010 .

[23]  Refail Kasimbeyli,et al.  Combined forecasts in portfolio optimization: A generalized approach , 2012, Comput. Oper. Res..

[24]  Rafail N. Gasimov,et al.  A multiobjective faculty-course-time slot assignment problem with preferences , 2007, Math. Comput. Model..

[25]  P. Pardalos,et al.  Pareto optimality, game theory and equilibria , 2008 .

[26]  Rafail N. Gasimov,et al.  Separation via polyhedral conic functions , 2006, Optim. Methods Softw..

[27]  H. P. Benson,et al.  An improved definition of proper efficiency for vector maximization with respect to cones , 1979 .

[28]  W. B. Gearhart Compromise solutions and estimation of the noninferior set , 1979 .

[29]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[30]  Rafail N. Gasimov,et al.  Augmented Lagrangian Duality and Nondifferentiable Optimization Methods in Nonconvex Programming , 2002, J. Glob. Optim..

[31]  J. Borwein Proper Efficient Points for Maximizations with Respect to Cones , 1977 .

[32]  Gabriele Eichfelder,et al.  Adaptive Scalarization Methods in Multiobjective Optimization , 2008, Vector Optimization.

[33]  Johannes Jahn,et al.  A Characterization of Properly Minimal Elements of a Set , 1985 .

[34]  Ignacy Kaliszewski,et al.  A modified weighted tchebycheff metric for multiple objective programming , 1987, Comput. Oper. Res..

[35]  P. Yu A Class of Solutions for Group Decision Problems , 1973 .

[36]  R. N. Gasimov Characterization of the Benson proper efficiency and scalarization in nonconvex vector optimization , 2001 .

[37]  Refail Kasimbeyli,et al.  The modified subgradient algorithm based on feasible values , 2009 .