A cellular automaton model for the effects of population movement and vaccination on epidemic propagation

[1]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[2]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[3]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[4]  Bernard P. Zeigler,et al.  Discrete event models for cell space simulation , 1982 .

[5]  Marvin Minsky Cellular Vacuum , 1982 .

[6]  R. Feynman Simulating physics with computers , 1999 .

[7]  D. S. Jones,et al.  Differential Equations and Mathematical Biology , 1983 .

[8]  Tommaso Toffoli,et al.  CAM: A high-performance cellular-automaton machine , 1984 .

[9]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[10]  S. Omohundro Modelling cellular automata with partial differential equations , 1984 .

[11]  G. Vichniac Simulating physics with cellular automata , 1984 .

[12]  M. Gerhardt,et al.  A cellular automaton describing the formation of spatially ordered structures in chemical systems , 1989 .

[13]  J. Tyson,et al.  A cellular automaton model of excitable media. III: fitting the Belousov-Zhabotinskiic reaction , 1990 .

[14]  J. Tyson,et al.  A cellular automaton model of excitable media. II: curvature, dispersion, rotating waves and meandering waves , 1990 .

[15]  Ken A. Hawick,et al.  Scientific modeling with massively parallel SIMD computers , 1991, Proc. IEEE.

[16]  L. Watson,et al.  Diffusion and wave propagation in cellular automaton models of excitable media , 1992 .

[17]  Stephen Wolfram,et al.  Cellular Automata And Complexity , 1994 .

[18]  D. J. Matzke,et al.  Impact of locality and dimensionality limits on architectural trends , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[19]  E.T.L. Omtzigt,et al.  Computational spacetimes , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[20]  C. Lacoursière,et al.  Statistical-mechanical analogies for space-dependent epidemics , 1996 .

[21]  A Johansen,et al.  A simple model of recurrent epidemics. , 1996, Journal of theoretical biology.

[22]  D. J. Bailey,et al.  Scaling and spatial dynamics in plant–pathogen systems: from individuals to populations , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  Elizabeth E. Holmes,et al.  Basic epidemiological concepts in a spatial context , 1997 .

[24]  Ioannis G. Karafyllidis,et al.  A model for predicting forest fire spreading using cellular automata , 1997 .

[25]  Hugues Chaté,et al.  Dynamical phases in a cellular automaton model for epidemic propagation , 1997 .

[26]  H. Agiza,et al.  On modeling epidemics. Including latency, incubation and variable susceptibility , 1998 .

[27]  R. Anderson,et al.  Forest-fire as a model for the dynamics of disease epidemics , 1998 .

[28]  Rita Maria Zorzenon dos Santos Using Cellular Automata to Learn About the Immune System , 1998 .

[29]  I Karafyllidis,et al.  A model for the influence of the greenhouse effect on insect and microorganism geographical distribution and population dynamics. , 1998, Bio Systems.

[30]  H. Agiza,et al.  On Modeling Hepatitis B Transmission Using Cellular Automata , 1998 .

[31]  Laure Tougne,et al.  Discrete Parabolas and Circles on 2D Cellular Automata , 1999, Theor. Comput. Sci..

[32]  Thomas Caraco,et al.  High-performance computing tools for modeling evolution in epidemics , 1999, Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences. 1999. HICSS-32. Abstracts and CD-ROM of Full Papers.