Perceptual evaluation of liquid simulation methods

This paper proposes a novel framework to evaluate fluid simulation methods based on crowd-sourced user studies in order to robustly gather large numbers of opinions. The key idea for a robust and reliable evaluation is to use a reference video from a carefully selected real-world setup in the user study. By conducting a series of controlled user studies and comparing their evaluation results, we observe various factors that affect the perceptual evaluation. Our data show that the availability of a reference video makes the evaluation consistent. We introduce this approach for computing scores of simulation methods as visual accuracy metric. As an application of the proposed framework, a variety of popular simulation methods are evaluated.

[1]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[2]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[3]  Mathieu Desbrun,et al.  Interactive multiresolution animation of deformable models , 1999, Computer Animation and Simulation.

[4]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[5]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[6]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, SIGGRAPH 2007.

[7]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[8]  Greg Turk,et al.  Hybrid smoothed particle hydrodynamics , 2011, SCA '11.

[9]  Nikolaus A. Adams,et al.  A generalized wall boundary condition for smoothed particle hydrodynamics , 2012, J. Comput. Phys..

[10]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[11]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[12]  Carol O'Sullivan,et al.  Clone attack! Perception of crowd variety , 2008, ACM Trans. Graph..

[13]  Hans-Peter Seidel,et al.  Video quality assessment for computer graphics applications , 2010, SIGGRAPH 2010.

[14]  Xiangyu Hu,et al.  Liquid Splash Modeling with Neural Networks , 2017, Comput. Graph. Forum.

[15]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[16]  UmKiwon,et al.  Perceptual evaluation of liquid simulation methods , 2017 .

[17]  D. Hunter MM algorithms for generalized Bradley-Terry models , 2003 .

[18]  Fabio Pellacini,et al.  Perceptually-driven decision theory for interactive realistic rendering , 2003, TOGS.

[19]  Reiji Tsuruno,et al.  Preserving Fluid Sheets with Adaptively Sampled Anisotropic Particles , 2012, IEEE Transactions on Visualization and Computer Graphics.

[20]  Diego Gutierrez,et al.  Evaluation of reverse tone mapping through varying exposure conditions , 2009, ACM Trans. Graph..

[21]  Gondy Leroy,et al.  Designing User Studies in Informatics , 2011 .

[22]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[23]  Arthur Veldman,et al.  A Volume-of-Fluid based simulation method for wave impact problems , 2005 .

[24]  K. Pearson NOTES ON THE HISTORY OF CORRELATION , 1920 .

[25]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[26]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[27]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[28]  Ludovic Hoyet,et al.  Evaluating the distinctiveness and attractiveness of human motions on realistic virtual bodies , 2013, ACM Trans. Graph..

[29]  Christopher Wojtan,et al.  Highly adaptive liquid simulations on tetrahedral meshes , 2013, ACM Trans. Graph..

[30]  Hujun Bao,et al.  Interactive localized liquid motion editing , 2013, ACM Trans. Graph..

[31]  JungHyun Han,et al.  Advanced Hybrid Particle‐Grid Method with Sub‐Grid Particle Correction , 2014, Comput. Graph. Forum.

[32]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[33]  Hans-Peter Seidel,et al.  Perceptually‐motivated Real‐time Temporal Upsampling of 3D Content for High‐refresh‐rate Displays , 2010, Comput. Graph. Forum.

[34]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[35]  Bedrich Benes,et al.  Perceptual importance of lighting phenomena in rendering of animated water , 2013, TAP.

[36]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[37]  Alan Chalmers,et al.  Selective quality rendering by exploiting human inattentional blindness: looking but not seeing , 2002, VRST '02.

[38]  Adam W. Bargteil,et al.  Physics-based animation of large-scale splashing liquids , 2013, ACM Trans. Graph..

[39]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[40]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[41]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[42]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[43]  John Keyser,et al.  Effect of Low‐level Visual Details in Perception of Deformation , 2016, Comput. Graph. Forum.

[44]  Adam Finkelstein,et al.  How well do line drawings depict shape? , 2009, SIGGRAPH '09.

[45]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[46]  Antonio Souto Iglesias,et al.  Three SPH Novel Benchmark Test Cases for free surface flows. , 2010 .

[47]  Ignacio Llamas,et al.  FlowFixer: Using BFECC for Fluid Simulation , 2005, NPH.

[48]  Chenfanfu Jiang,et al.  A material point method for viscoelastic fluids, foams and sponges , 2015, Symposium on Computer Animation.

[49]  Matthias Teschner,et al.  Unified spray, foam and air bubbles for particle-based fluids , 2012, The Visual Computer.

[50]  R. Fedkiw,et al.  USING THE PARTICLE LEVEL SET METHOD AND A SECOND ORDER ACCURATE PRESSURE BOUNDARY CONDITION FOR FREE SURFACE FLOWS , 2003 .

[51]  Rüdiger Westermann,et al.  Narrow Band FLIP for Liquid Simulations , 2016, Comput. Graph. Forum.

[52]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..