Retrieval of leaf area index from MODIS surface reflectance by model inversion using different minimization criteria

Leaf area index (LAI) is one of the key parameters for the calculation of the energy budget, photosynthesis, and the interception of precipitation in land-surface models at local to global scales. Estimation of LAI from satellite data is a challenging and difficult problem. Studies over the past decades have focused predominantly on the improvement of forward modeling of the radiative transfer problem and on the application of more realistic numerical inversion schemes. Little or no attention has been paid to alternatives for the least squares method as a statistical distance measure or cost function, used to minimize the distance between observations and model predictions. The least-squares method has properties that assume noise with a Gaussian distribution and zero mean, an assumption often violated when LAI is estimated from satellite reflectance data. Here, we test the use of alternative statistical distance measures or cost functions to estimate LAI. We combine a look-up table (LUT)-inversion method based on the FLIGHT radiative transfer model and test how well it estimates LAI from MODIS reflectance data for a large set of alternative cost functions. We consider three classes of statistical distance measures or cost functions: information divergence measures, M-estimates, and minimum contrast methods. We estimate LAI from the Moderate Resolution Imaging Spectrometer (MODIS) surface reflectance product (MOD09GA) for 11 VALERI and BigFoot sites around the globe. These sites consist of a wide range of tree-cover types that include conifer, broadleaf and mixed (conifer, broadleaf, grassland) forest sites. We develop LUTs with FLIGHT for conifer and broadleaf forests and we show that improvements can be obtained for the estimation of LAI by choosing a cost function appropriate for a particular problem. Results show error reductions of 20% compared with the MODIS LAI retrieval (MOD15A2).

[1]  C. Bacour,et al.  Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. , 2000 .

[2]  Junichi Susaki,et al.  Robust estimation of BRDF model parameters , 2004 .

[3]  E. R. Stoner,et al.  REFLECTANCE PROPERTIES OF SOILS , 1986 .

[4]  Peng Gong,et al.  Inverting a canopy reflectance model using a neural network , 1999 .

[5]  J. Norman,et al.  Modeling the Radiant Transfers of Sparse Vegetation Canopies , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[6]  M. Ruiz-Medina,et al.  Spatial autoregressive functional plug-in prediction of ocean surface temperature , 2012, Stochastic Environmental Research and Risk Assessment.

[7]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[8]  Dirk Pflugmacher,et al.  Numerical Terradynamic Simulation Group 7-2006 MODIS land cover and LAI Collection 4 product quality across nine sites in the western hemisphere , 2018 .

[9]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[10]  Hongliang Fang,et al.  Retrieving leaf area index with a neural network method: simulation and validation , 2003, IEEE Trans. Geosci. Remote. Sens..

[11]  A. Goetz,et al.  Assessing spatial patterns of forest fuel using AVIRIS data , 2006 .

[12]  Masanobu Taniguchi,et al.  Minimum Contrast Estimation for Spectral Densities of Stationary Processes , 1987 .

[13]  Omar Champo Jiménez,et al.  ESTIMACIÓN DEL ÍNDICE DE ÁREA FOLIAR EN LA RESERVA DE LA BIÓSFERA MARIPOSA MONARCA , 2010 .

[14]  Dirk Pflugmacher,et al.  BigFoot Leaf Area Index Surfaces for North and South American Sites, 2000-2003 , 2006 .

[15]  Leandro Pardo,et al.  Asymptotic distribution of (h, φ)-entropies , 1993 .

[16]  K. Puettmann,et al.  Spatial aspects of the influence of silver birch ( Betula pendula L.) on growth and quality of young oaks ( Quercus spp.) in central Germany , 2004 .

[17]  C. Tucker,et al.  A Global 9-yr Biophysical Land Surface Dataset from NOAA AVHRR Data , 2000 .

[18]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[19]  Thomas J. Jackson,et al.  Crop condition and yield simulations using Landsat and MODIS , 2004 .

[20]  Jean-Luc Widlowski,et al.  Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models , 2007 .

[21]  Frédéric Baret,et al.  Training a neural network with a canopy reflectance model to estimate crop leaf area index , 2003 .

[22]  Suguru Arimoto,et al.  Information-Theoretical Considerations on Estimation Problems , 1971, Inf. Control..

[23]  Peter R. J. North,et al.  Statistical Distances and Their Applications to Biophysical Parameter Estimation: Information Measures, M-Estimates, and Minimum Contrast Methods , 2013, Remote. Sens..

[24]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[25]  Leandro Pardo,et al.  Asymptotic behaviour and statistical applications of divergence measures in multinomial populations: a unified study , 1995 .

[26]  N. Gobron,et al.  Monitoring the photosynthetic activity of vegetation from remote sensing data , 2006 .

[27]  Peter R. J. North,et al.  Three-dimensional forest light interaction model using a Monte Carlo method , 1996, IEEE Trans. Geosci. Remote. Sens..

[28]  P. North,et al.  Satellite-driven modelling of Net Primary Productivity (NPP): Theoretical analysis , 2009 .

[29]  I. Reiter,et al.  Competition-dependent modelling of foliage biomass in forest stands , 2004, Trees.

[30]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[31]  R. Küssner,et al.  Comparison of direct and indirect estimation of leaf area index in mature Norway spruce stands of eastern Germany , 2000 .

[32]  J. N. Kapur,et al.  Measures of uncertainty mathematical programming and physics , 1970 .

[33]  Jean-Luc Widlowski,et al.  The RAMI On-line Model Checker (ROMC): A web-based benchmarking facility for canopy reflectance models , 2008 .

[34]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.

[35]  F. Baret,et al.  Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data : Principles and validation , 2006 .

[36]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[37]  Darrel L. Williams,et al.  BOREAS in 1997: Experiment overview, scientific results, and future directions , 1997 .

[38]  C. Atzberger Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models , 2004 .

[39]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[40]  Runhe Shi,et al.  Calculation of mesophyll structure parameter and its effect on leaf spectral reflectance , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[41]  A. Skidmore,et al.  Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland , 2008 .

[42]  Frédéric Baret,et al.  Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography , 2004 .

[43]  F. Baret,et al.  Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling , 2004 .

[44]  C. Butson,et al.  Leaf Area Index Maps at 30-m Resolution, VALERI Site, Larose, Canada , 2006 .

[45]  Masanobu Taniguchi On estimation of parameters of Gaussian stationary processes , 1979 .

[46]  C. Justice,et al.  Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation , 1997 .

[47]  B. Holben Characteristics of maximum-value composite images from temporal AVHRR data , 1986 .

[48]  S. T. Gower,et al.  Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net Primary Production of Terrestrial Ecosystems , 1999 .

[49]  F. Baret,et al.  Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems , 2008 .

[50]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[51]  Peter R. J. North,et al.  A Monte Carlo radiative transfer model of satellite waveform LiDAR , 2010 .

[52]  BigFoot Field Data for North American Sites, 1999-2003 , 2008 .

[53]  Peter R. J. North,et al.  Estimation of fAPAR, LAI, and vegetation fractional cover from ATSR-2 imagery , 2002 .

[54]  P. Kempeneers,et al.  Model inversion for chlorophyll estimation in open canopies from hyperspectral imagery , 2008 .

[55]  María Dolores Ruiz-Medina,et al.  Integration of spatial functional interaction in the extrapolation of ocean surface temperature anomalies due to global warming , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[56]  Luis Alonso,et al.  Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3 , 2012 .

[57]  J. Randerson,et al.  Terrestrial ecosystem production: A process model based on global satellite and surface data , 1993 .

[58]  R. Myneni,et al.  Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data , 2000 .

[59]  Compton J. Tucker,et al.  Sensitivity of Climate to Changes in NDVI , 2000 .

[60]  G. D’Urso,et al.  Experimental assessment of the Sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize , 2009 .

[61]  S. Sheather,et al.  Robust Estimation and Testing , 1990 .