Time-space trade-offs in population protocols for the majority problem
暂无分享,去创建一个
Robert Elsässer | Petra Berenbrink | Tom Friedetzky | Dominik Kaaser | Tomasz Radzik | Peter Kling | P. Berenbrink | Tom Friedetzky | T. Radzik | Dominik Kaaser | Robert Elsässer | Peter Kling
[1] Dan Alistarh,et al. Fast and Exact Majority in Population Protocols , 2015, PODC.
[2] David Eisenstat,et al. Fast computation by population protocols with a leader , 2006, Distributed Computing.
[3] David Eisenstat,et al. Stably computable predicates are semilinear , 2006, PODC '06.
[4] Leszek Gasieniec,et al. Fast Space Optimal Leader Election in Population Protocols , 2017, SODA.
[5] Yves Mocquard,et al. Counting with Population Protocols , 2015, 2015 IEEE 14th International Symposium on Network Computing and Applications.
[6] Robert Elsässer,et al. A Population Protocol for Exact Majority with O(log5/3 n) Stabilization Time and Theta(log n) States , 2018, DISC.
[7] James Aspnes,et al. An Introduction to Population Protocols , 2007, Bull. EATCS.
[8] David Eisenstat,et al. A simple population protocol for fast robust approximate majority , 2007, Distributed Computing.
[9] Colin Cooper,et al. Brief Announcement: Population Protocols for Leader Election and Exact Majority with O(log2 n) States and O(log2 n) Convergence Time , 2017, PODC.
[10] David Eisenstat,et al. The computational power of population protocols , 2006, Distributed Computing.
[11] Dan Alistarh,et al. Space-Optimal Majority in Population Protocols , 2017, SODA.
[12] Paul G. Spirakis,et al. Determining majority in networks with local interactions and very small local memory , 2014, Distributed Computing.
[13] Robert Elsässer,et al. Recent Results in Population Protocols for Exact Majority and Leader Election , 2018, Bull. EATCS.
[14] Paul G. Spirakis,et al. Exact size counting in uniform population protocols in nearly logarithmic time , 2018, ArXiv.
[15] Adrian Kosowski,et al. Brief Announcement: Population Protocols Are Fast , 2018, PODC.
[16] David Doty,et al. Efficient Size Estimation and Impossibility of Termination in Uniform Dense Population Protocols , 2018, PODC.
[17] Robert Elsässer,et al. A population protocol for exact majority with O(\log5/3n) stabilization time and asymptotically optimal number of states , 2018, ArXiv.
[18] Dan Alistarh,et al. Time-Space Trade-offs in Population Protocols , 2016, SODA.
[19] Michael J. Fischer,et al. Computation in networks of passively mobile finite-state sensors , 2004, PODC '04.
[20] Moez Draief,et al. Convergence Speed of Binary Interval Consensus , 2010, 2010 Proceedings IEEE INFOCOM.