Random walks with long-range steps generated by functions of Laplacian matrices

In this paper, we explore different Markovian random walk strategies on networks with transition probabilities between nodes defined in terms of functions of the Laplacian matrix. We generalize random walk strategies with local information in the Laplacian matrix, that describes the connections of a network, to a dynamics determined by functions of this matrix. The resulting processes are non-local allowing transitions of the random walker from one node to nodes beyond its nearest neighbors. We find that only two types of Laplacian functions are admissible with distinct behaviors for long-range steps in the infinite network limit: type (i) functions generate Brownian motions, type (ii) functions Levy flights. For this asymptotic long-range step behavior only the lowest non-vanishing order of the Laplacian function is relevant, namely first order for type (i), and fractional order for type (ii) functions. In the first part, we discuss spectral properties of the Laplacian matrix and a series of relations that are maintained by a particular type of functions that allow to define random walks on any type of undirected connected networks. Once described general properties, we explore characteristics of random walk strategies that emerge from particular cases with functions defined in terms of exponentials, logarithms and powers of the Laplacian as well as relations of these dynamics with non-local strategies like Levy flights and fractional transport. Finally, we analyze the global capacity of these random walk strategies to explore networks like lattices and trees and different types of random and complex networks.

[1]  Jean-Charles Delvenne,et al.  Flow graphs: interweaving dynamics and structure , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  A. P. Riascos,et al.  Fractional random walk lattice dynamics , 2016, 1608.08762.

[3]  Milan Merkle,et al.  Completely Monotone Functions: A Digest , 2012, 1211.0900.

[4]  Yi Zhao,et al.  Lévy walk in complex networks: An efficient way of mobility , 2014 .

[5]  George Weiss,et al.  Random walks and random environments, volume 1: Random walks , 1996 .

[6]  A. P. Riascos,et al.  Fractional quantum mechanics on networks: Long-range dynamics and quantum transport. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Michael Small,et al.  Lévy Walk Navigation in Complex Networks: A Distinct Relation between Optimal Transport Exponent and Network Dimension , 2015, Scientific Reports.

[8]  Dimitri Volchenkov,et al.  Random Walks and Diffusions on Graphs and Databases , 2011 .

[9]  José L. Mateos,et al.  Long-Range Navigation on Complex Networks using Lévy Random Walks , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Piet Van Mieghem,et al.  Graph Spectra for Complex Networks , 2010 .

[11]  S. Bernstein,et al.  Sur les fonctions absolument monotones , 1929 .

[12]  Pierre Borgnat,et al.  Graph Wavelets for Multiscale Community Mining , 2014, IEEE Transactions on Signal Processing.

[13]  K. Miller,et al.  Completely monotonic functions , 2001 .

[14]  Renaud Lambiotte,et al.  Burstiness and fractional diffusion on complex networks , 2016, The European Physical Journal B.

[15]  Alexander Blumen,et al.  Continuous-Time Quantum Walks: Models for Coherent Transport on Complex Networks , 2011, 1101.2572.

[16]  Manik Banik,et al.  Hardy's nonlocality argument as a witness for postquantum correlations , 2012, 1209.3490.

[17]  J. Leydold,et al.  Laplacian eigenvectors of graphs : Perron-Frobenius and Faber-Krahn type theorems , 2007 .

[18]  A. P. Riascos,et al.  Fractional diffusion on circulant networks: emergence of a dynamical small world , 2015 .

[19]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[20]  Wei Huang,et al.  Navigation in spatial networks: A survey , 2014 .

[21]  Thomas Michelitsch,et al.  Lattice fractional Laplacian and its continuum limit kernel on the finite cyclic chain , 2015, 1511.01251.

[22]  S. N. Filippov,et al.  Quantum evolution in the stroboscopic limit of repeated measurements , 2016, 1609.05501.

[23]  A. P. Riascos,et al.  Emergence of encounter networks due to human mobility , 2017, PloS one.

[24]  A fractional generalization of the classical lattice dynamics approach , 2016, 1610.03744.

[25]  P. Blanchard,et al.  Random Walks and Diffusions on Graphs and Databases: An Introduction , 2011 .

[26]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[27]  Peter F. Stadler,et al.  Laplacian Eigenvectors of Graphs , 2007 .

[28]  C. Micchelli,et al.  On functions which preserve the class of Stieltjes matrices , 1979 .

[29]  Gregory F. Lawler,et al.  Random Walk: A Modern Introduction , 2010 .

[30]  G. Weiss Aspects and Applications of the Random Walk , 1994 .

[31]  A. P. Riascos,et al.  Recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic lattices , 2017, 1707.05843.

[32]  Yup Kim,et al.  Bimolecular chemical reactions on weighted complex networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[34]  Mason A. Porter,et al.  Random walks and diffusion on networks , 2016, ArXiv.

[35]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[36]  Jean-Charles Delvenne,et al.  Random Multi-Hopper Model. Super-Fast Random Walks on Graphs , 2016, J. Complex Networks.

[37]  Jie Zhang,et al.  Navigation by anomalous random walks on complex networks , 2016, Scientific Reports.

[38]  A. P. Riascos,et al.  Fractional dynamics on networks: emergence of anomalous diffusion and Lévy flights. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[40]  Konstantin Avrachenkov,et al.  Fractional graph-based semi-supervised learning , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[41]  Heiko Rieger,et al.  Random walks on complex networks. , 2004, Physical review letters.

[42]  Yamir Moreno,et al.  Lévy random walks on multiplex networks , 2016, Scientific Reports.

[43]  Markus Brede,et al.  Networks—An Introduction. Mark E. J. Newman. (2010, Oxford University Press.) $65.38, £35.96 (hardcover), 772 pages. ISBN-978-0-19-920665-0. , 2012, Artificial Life.

[44]  T. Michelitsch,et al.  Nonlocal constitutive laws generated by matrix functions: Lattice Dynamics Models and their Continuum Limits , 2013, 1307.7688.

[45]  Leon W. Cohen,et al.  Conference Board of the Mathematical Sciences , 1963 .

[46]  Jure Leskovec,et al.  Supervised random walks: predicting and recommending links in social networks , 2010, WSDM '11.

[47]  Marco Saerens,et al.  Algorithms and Models for Network Data and Link Analysis , 2016 .

[48]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[49]  O. Bénichou,et al.  Global mean first-passage times of random walks on complex networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[51]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[52]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[53]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[55]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.