A Novel Cubic-Equilibrium Chaotic System with Coexisting Hidden Attractors: Analysis, and Circuit Implementation

Chaotic systems with a curve of equilibria have attracted considerable interest in theoretical researches and engineering applications because they are categorized as systems with hidden attractors. In this paper, we introduce a new three-dimensional autonomous system with cubic equilibrium. Fundamental dynamical properties and complex dynamics of the system have been investigated. Of particular interest is the coexistence of chaotic attractors in the proposed system. Furthermore, we have designed and implemented an electronic circuit to verify the feasibility of such a system with cubic equilibrium.

[1]  Julien Clinton Sprott,et al.  Constructing Chaotic Systems with Total Amplitude Control , 2015, Int. J. Bifurc. Chaos.

[2]  Julien Clinton Sprott,et al.  A New Piecewise Linear Hyperchaotic Circuit , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  Ioannis M. Kyprianidis,et al.  Image encryption process based on chaotic synchronization phenomena , 2013, Signal Process..

[4]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[5]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[6]  Guangyi Wang,et al.  Dynamic Character Analysis of a LDR, memristor-Based Chaotic System , 2014, J. Circuits Syst. Comput..

[7]  L. Minati Experimental Implementation of Networked Chaotic Oscillators Based on Cross-Coupled Inverter Rings in a CMOS Integrated Circuit , 2015, J. Circuits Syst. Comput..

[8]  Ioannis M. Kyprianidis,et al.  An Universal phenomenon in Mutually Coupled Chua's Circuit family , 2014, J. Circuits Syst. Comput..

[9]  Hongtao Li,et al.  A New Class of Chaotic Circuit with Logic Elements , 2015, J. Circuits Syst. Comput..

[10]  Cüneyt Güzelis,et al.  A Dynamical State Feedback Chaotification Method with Application on liquid mixing , 2013, J. Circuits Syst. Comput..

[11]  Luigi Fortuna,et al.  A chaotic circuit based on Hewlett-Packard memristor. , 2012, Chaos.

[12]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[13]  Jun Ma,et al.  Model of electrical activity in a neuron under magnetic flow effect , 2016 .

[14]  Ahmet Uçar,et al.  On the chaotic behaviour of a prototype delayed dynamical system , 2003 .

[15]  Chai Wah Wu,et al.  Chua's oscillator: A compendium of chaotic phenomena , 1994 .

[16]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Ioannis M. Kyprianidis,et al.  A chaotic path planning generator for autonomous mobile robots , 2012, Robotics Auton. Syst..

[18]  Tomasz Kapitaniak,et al.  Rare and hidden attractors in Van der Pol-Duffing oscillators , 2015 .

[19]  R. Leipnik,et al.  Double strange attractors in rigid body motion with linear feedback control , 1981 .

[20]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[21]  Zhigang Zeng,et al.  Multistability of Recurrent Neural Networks With Time-varying Delays and the Piecewise Linear Activation Function , 2010, IEEE Transactions on Neural Networks.

[22]  G. Zhong Implementation of Chua's circuit with a cubic nonlinearity , 1994 .

[23]  Luigi Fortuna,et al.  Emulating complex business cycles by using an electronic analogue , 2012 .

[24]  Xinyi Wu,et al.  Simulating electric activities of neurons by using PSPICE , 2013, Nonlinear Dynamics.

[25]  A. Baglin,et al.  A dynamical instability as a driving mechanism for stellar oscillations , 1985 .

[26]  K. Gopakumar,et al.  Chua's oscillator in Integrated Circuit Form with Inbuilt Control Option , 2011, J. Circuits Syst. Comput..

[27]  Julien Clinton Sprott,et al.  Simple Chaotic Flow with Circle and Square Equilibrium , 2016, Int. J. Bifurc. Chaos.

[28]  G. A. Leonov,et al.  Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations , 2014, 1410.2016.

[29]  Sundarapandian Vaidyanathan,et al.  A no-equilibrium hyperchaotic system with a cubic nonlinear term , 2016 .

[30]  Alain Arneodo,et al.  A possible new mechanism for the onset of turbulence , 1981 .

[31]  Leon O. Chua,et al.  ON PERIODIC ORBITS AND HOMOCLINIC BIFURCATIONS IN CHUA’S CIRCUIT WITH A SMOOTH NONLINEARITY , 1993 .

[32]  Julien Clinton Sprott,et al.  Simple Autonomous Chaotic Circuits , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[33]  Julien Clinton Sprott,et al.  Finding coexisting attractors using amplitude control , 2014 .

[34]  René Thomas,et al.  DETERMINISTIC CHAOS SEEN IN TERMS OF FEEDBACK CIRCUITS: ANALYSIS, SYNTHESIS, "LABYRINTH CHAOS" , 1999 .

[35]  Serdar Ozoguz,et al.  n-scroll chaotic attractors from a first-order time-delay differential equation. , 2007, Chaos.

[36]  K. Kyamakya,et al.  On the analysis of semiconductor diode-based chaotic and hyperchaotic generators—a case study , 2014 .

[37]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[38]  Serdar Çiçek,et al.  Simulation and Circuit Implementation of Sprott Case H Chaotic System and its Synchronization Application for Secure Communication Systems , 2013, J. Circuits Syst. Comput..

[39]  Zhigang Zeng,et al.  Multistability of Neural Networks With Time-Varying Delays and Concave-Convex Characteristics , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[40]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[41]  Julien Clinton Sprott,et al.  Chaotic flows with a single nonquadratic term , 2014 .

[42]  Julien Clinton Sprott,et al.  Linearization of the Lorenz system , 2015 .

[43]  Julien Clinton Sprott,et al.  Some simple chaotic jerk functions , 1997 .

[44]  Vaithianathan Venkatasubramanian,et al.  Coexistence of four different attractors in a fundamental power system model , 1999 .

[45]  Przemyslaw Perlikowski,et al.  Multistability and Rare attractors in van der Pol-Duffing oscillator , 2011, Int. J. Bifurc. Chaos.

[46]  S. K. Dana,et al.  Extreme multistability: Attractor manipulation and robustness. , 2015, Chaos.

[47]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[48]  N. Kuznetsov,et al.  The Lyapunov dimension and its estimation via the Leonov method , 2016, 1602.05410.

[49]  Banlue Srisuchinwong,et al.  Realization of a Lambert W-Function for a Chaotic Circuit , 2013, J. Circuits Syst. Comput..

[50]  Henning U. Voss,et al.  Real-Time Anticipation of Chaotic States of an Electronic Circuit , 2002, Int. J. Bifurc. Chaos.

[51]  C. Wu,et al.  Chua's Equation with Cubic Nonlinearity , 1996 .

[52]  K. CHAKRABARTY,et al.  Control of Chaos in Current Controlled DC Drives , 2013, J. Circuits Syst. Comput..

[53]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[54]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[55]  Shiyan Hu,et al.  Discrete Wavelet Transform Based Circuit Layout Fingerprinting using Chaotic System , 2012, J. Circuits Syst. Comput..

[56]  Tomasz Kapitaniak,et al.  Multistability: Uncovering hidden attractors , 2015, The European Physical Journal Special Topics.

[57]  L. Chua,et al.  The double scroll family , 1986 .

[58]  Celso Grebogi,et al.  Experimental validation of wireless communication with chaos. , 2016, Chaos.

[59]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[60]  O. Rössler An equation for continuous chaos , 1976 .

[61]  Jacques Kengne,et al.  Coexistence of Chaos with Hyperchaos, Period-3 Doubling Bifurcation, and Transient Chaos in the Hyperchaotic Oscillator with Gyrators , 2015, Int. J. Bifurc. Chaos.

[62]  Qigui Yang,et al.  A new Lorenz-type hyperchaotic system with a curve of equilibria , 2015, Math. Comput. Simul..

[63]  Wang Zhongpeng,et al.  Dynamics analysis and circuit implementation of a new three-dimensional chaotic system , 2015 .

[64]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[65]  Jun Tang,et al.  A class of initials-dependent dynamical systems , 2017, Appl. Math. Comput..

[66]  A. Ucar,et al.  A prototype model for chaos studies , 2002 .

[67]  Nikolay V. Kuznetsov,et al.  Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..

[68]  Qing-Tao Han,et al.  Dynamic analysis of an autonomous chaotic system with cubic nonlinearity , 2016 .

[69]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[70]  Kyandoghere Kyamakya,et al.  Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies , 2014 .

[71]  Runtong Chu,et al.  Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice , 2014 .

[72]  Ming-Jyi Jang,et al.  Sliding Mode Control of Chaos in the cubic Chua's Circuit System , 2002, Int. J. Bifurc. Chaos.