Comparing Multilevel and Classical Confirmatory Factor Analysis Parameterizations of Multirater Data: A Monte Carlo Simulation Study

This simulation study assesses the statistical performance of two mathematically equivalent parameterizations for multitrait–multimethod data with interchangeable raters—a multilevel confirmatory factor analysis (CFA) and a classical CFA parameterization. The sample sizes of targets and raters, the factorial structure of the trait factors, and rater missingness are varied. The classical CFA approach yields a high proportion of improper solutions under conditions with small sample sizes and indicator-specific trait factors. In general, trait factor related parameters are more sensitive to bias than other types of parameters. For multilevel CFAs, there is a drastic bias in fit statistics under conditions with unidimensional trait factors on the between level, where root mean square error of approximation (RMSEA) and χ2 distributions reveal a downward bias, whereas the between standardized root mean square residual is biased upwards. In contrast, RMSEA and χ2 for classical CFA models are severely upwardly biased in conditions with a high number of raters and a small number of targets.

[1]  Michael Eid,et al.  Multitrait-Multimethod-Analysis: The Psychometric Foundation of CFA-MTMM Models , 2018 .

[2]  Mirjam Moerbeek,et al.  Multilevel Analysis : Techniques and Applications, Third Edition , 2017 .

[3]  M. Eid,et al.  Measuring Method Effects , 2016 .

[4]  Michael Eid,et al.  The Effects of Nonindependent Rater Sets in Multilevel–Multitrait–Multimethod Models , 2015 .

[5]  Joshua F. Wiley,et al.  Automating Mplus Model Estimation and Interpretation , 2014 .

[6]  M. Eid,et al.  A longitudinal multilevel CFA-MTMM model for interchangeable and structurally different methods , 2014, Front. Psychol..

[7]  D. A. Kenny,et al.  The Multitrait-Multimethod Matrix: Design, Analysis, and Conceptual Issues , 2014 .

[8]  Ehri Ryu,et al.  Model fit evaluation in multilevel structural equation models , 2014, Front. Psychol..

[9]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[10]  M. Miller,et al.  Sample Size Requirements for Structural Equation Models , 2013, Educational and psychological measurement.

[11]  Tobias Koch Multilevel Structural Equation Modeling of Multitrait-Multimethod-Multioccasion Data , 2013 .

[12]  Yves Rosseel,et al.  lavaan: An R Package for Structural Equation Modeling , 2012 .

[13]  Morten Moshagen,et al.  The Model Size Effect in SEM: Inflated Goodness-of-Fit Statistics Are Due to the Size of the Covariance Matrix , 2012 .

[14]  S. West,et al.  Model fit and model selection in structural equation modeling. , 2012 .

[15]  Tenko Raykov,et al.  On Testability of Missing Data Mechanisms in Incomplete Data Sets , 2011 .

[16]  Alan Agresti,et al.  Categorical Data Analysis , 2003 .

[17]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[18]  Cora J. M. Maas,et al.  The effect of estimation method and sample size in multilevel structural equation modeling , 2010 .

[19]  Dawn Iacobucci,et al.  Structural Equations Modeling: Fit Indices, Sample Size, and Advanced Topics , 2010 .

[20]  Ehri Ryu,et al.  Level-Specific Evaluation of Model Fit in Multilevel Structural Equation Modeling , 2009 .

[21]  K. Schermelleh-Engel,et al.  Analyzing Multitrait- Multimethod Data A Comparison of Three Approaches , 2009 .

[22]  Michael Eid,et al.  A CTC(M−1) Model for Different Types of Raters , 2009 .

[23]  Jaak Billiet,et al.  A Monte Carlo sample size study: How many countries are needed for accurate multilevel SEM? , 2009 .

[24]  Jee-Seon Kim,et al.  Multilevel latent variable modeling: Current research and recent developments. , 2009 .

[25]  Simine Vazire,et al.  Knowing me, knowing you: the accuracy and unique predictive validity of self-ratings and other-ratings of daily behavior. , 2008, Journal of personality and social psychology.

[26]  M. Eid,et al.  Structural equation modeling of multitrait-multimethod data: different models for different types of methods. , 2008, Psychological methods.

[27]  M. Eid,et al.  Analyzing the convergent and discriminant validity of states and traits: development and applications of multimethod latent state-trait models. , 2008, Psychological assessment.

[28]  Walter L. Leite A Comparison of Latent Growth Models for Constructs Measured by Multiple Items , 2007 .

[29]  S. Vazire Informant reports: A cheap, fast, and easy method for personality assessment , 2006 .

[30]  André Beauducel,et al.  On the Performance of Maximum Likelihood Versus Means and Variance Adjusted Weighted Least Squares Estimation in CFA , 2006 .

[31]  Michael Eid,et al.  Structural Equation Models for Multitrait-Multimethod Data , 2006 .

[32]  Michael C Neale,et al.  People are variables too: multilevel structural equations modeling. , 2005, Psychological methods.

[33]  Ronald M Epstein,et al.  Peer assessment of professional competence , 2005, Medical education.

[34]  J. Hox,et al.  Sufficient Sample Sizes for Multilevel Modeling , 2005 .

[35]  Xin-Yuan Song,et al.  Evaluation of the Bayesian and Maximum Likelihood Approaches in Analyzing Structural Equation Models with Small Sample Sizes , 2004, Multivariate behavioral research.

[36]  Ke-Hai Yuan,et al.  Eight test statistics for multilevel structural equation models , 2003, Comput. Stat. Data Anal..

[37]  Patrick J Curran,et al.  Have Multilevel Models Been Structural Equation Models All Along? , 2003, Multivariate behavioral research.

[38]  D. A. Kenny,et al.  Effect of the Number of Variables on Measures of Fit in Structural Equation Modeling , 2003 .

[39]  Walter Krämer,et al.  Review of Modern applied statistics with S, 4th ed. by W.N. Venables and B.D. Ripley. Springer-Verlag 2002 , 2003 .

[40]  Dennis L. Jackson Revisiting Sample Size and Number of Parameter Estimates: Some Support for the N:q Hypothesis , 2003 .

[41]  B. Muthén,et al.  How to Use a Monte Carlo Study to Decide on Sample Size and Determine Power , 2002 .

[42]  Craig K. Enders,et al.  Applying the Bollen-Stine Bootstrap for Goodness-of-Fit Measures to Structural Equation Models with Missing Data , 2002, Multivariate behavioral research.

[43]  K. Bollen,et al.  The Noncentral Chi-square Distribution in Misspecified Structural Equation Models: Finite Sample Results from a Monte Carlo Simulation , 2002, Multivariate behavioral research.

[44]  Brian D. Ripley,et al.  Modern applied statistics with S, 4th Edition , 2002, Statistics and computing.

[45]  N. Aaronson,et al.  The role of health care providers and significant others in evaluating the quality of life of patients with chronic disease. , 2002, Journal of clinical epidemiology.

[46]  G. A. Marcoulides,et al.  Multilevel Analysis Techniques and Applications , 2002 .

[47]  Craig K. Enders,et al.  The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data. , 2001, Psychological methods.

[48]  G. Hancock,et al.  Performance of Bootstrapping Approaches to Model Test Statistics and Parameter Standard Error Estimation in Structural Equation Modeling , 2001 .

[49]  M. Julian The Consequences of Ignoring Multilevel Data Structures in Nonhierarchical Covariance Modeling , 2001 .

[50]  Craig K. Enders,et al.  The Relative Performance of Full Information Maximum Likelihood Estimation for Missing Data in Structural Equation Models , 2001 .

[51]  K. Bollen,et al.  Improper Solutions in Structural Equation Models , 2001 .

[52]  Cora J. M. Maas,et al.  The Accuracy of Multilevel Structural Equation Modeling With Pseudobalanced Groups and Small Samples , 2001 .

[53]  A. Boomsma Reporting Analyses of Covariance Structures , 2000 .

[54]  L. Dumenci,et al.  Multitrait-multimethod Analysis , 2000 .

[55]  Steven D. Brown,et al.  Handbook of applied multivariate statistics and mathematical modeling , 2000 .

[56]  Rex B. Kline,et al.  Principles and Practice of Structural Equation Modeling , 1998 .

[57]  H W Marsh,et al.  Is More Ever Too Much? The Number of Indicators per Factor in Confirmatory Factor Analysis. , 1998, Multivariate behavioral research.

[58]  P. Bentler,et al.  Fit indices in covariance structure modeling : Sensitivity to underparameterized model misspecification , 1998 .

[59]  Werner Wothke,et al.  Covariance components analysis of the multitrait-multimethod matrix. , 1995 .

[60]  L. Harlow,et al.  Effects of estimation methods, number of indicators per factor, and improper solutions on structural equation modeling fit indices , 1995 .

[61]  W. Hofstee,et al.  Who should own the definition of personality? , 1994 .

[62]  B. Muthén,et al.  Multilevel Covariance Structure Analysis , 1994 .

[63]  R. Stine,et al.  Bootstrapping Goodness-of-Fit Measures in Structural Equation Models , 1992 .

[64]  N. Aaronson,et al.  The role of health care providers and significant others in evaluating the quality of life of patients with chronic disease: A review , 1992 .

[65]  Peter M. Bentler,et al.  Practical Issues in Structural Modeling , 1987 .

[66]  A. Boomsma Nonconvergence, improper solutions, and starting values in lisrel maximum likelihood estimation , 1985 .

[67]  K. Widaman Hierarchically Nested Covariance Structure Models for Multitrait-Multimethod Data , 1985 .

[68]  D. Campbell,et al.  Convergent and discriminant validation by the multitrait-multimethod matrix. , 1959, Psychological bulletin.