Erdös-Szekeres "happy end"-type theorems for separoïds

In 1935 Pal Erdos and Gyorgy Szekeres proved that, roughly speaking, any configuration ofnpoints in general position in the plane havelognpoints in convex position - which are the vertices of a convex polygon. Later, in 1983, Bernhard Korte and Laszlo Lovasz generalised this result in a purely combinatorial context; the context of greedoids. In this note we give one step further to generalise this last result for arbitrary dimensions, but in the context of separoids; thus, via the geometric representation theorem for separoids, this can be applied to families of convex bodies. Also, it is observed that the existence of some homomorphisms of separoids implies the existence of not-too-small polytopal subfamilies - where each body is separated from its relative complement. Finally, by means of a probabilistic argument, it is settled, basically, that for all d>2, asymptotically almost all ''simple'' families of n ''d-separated'' convex bodies contains a polytopal subfamily of order lognd+1.

[1]  Luis Pedro Montejano,et al.  Separoids, Their Categories and a Hadwiger-Type Theorem for Transversals , 2002, Discret. Comput. Geom..

[2]  J. Eckhoff Helly, Radon, and Carathéodory Type Theorems , 1993 .

[3]  V. Soltan,et al.  The Erdos-Szekeres problem on points in convex position – a survey , 2000 .

[4]  B. Sturmfels Oriented Matroids , 1993 .

[5]  J. Radon Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .

[6]  Hortensia Galeana-Sánchez,et al.  Kernels in Orientations of Pretransitive Orientable Graphs , 2006 .

[7]  R. Connelly In Handbook of Convex Geometry , 1993 .

[8]  Pavel Valtr,et al.  Point Configurations in d-Space without Large Subsets in Convex Position , 2003, Discret. Comput. Geom..

[9]  Salvador Pérez-Esteva,et al.  N-harmonic extensions of weighted integrable distributions , 2006 .

[10]  Hortensia Galeana-Sánchez,et al.  Kernels and some operations in edge-coloured digraphs , 2008, Discret. Math..

[11]  Javier Bracho,et al.  Separoids and characterization of linear uniform oriented matroids , 2002 .

[12]  Carlos Villegas-Blas The Bargmann transform and regularization of the 2, 3, 5-dimensional Kepler problem , 2006 .

[13]  Rita Zuazua,et al.  Quadratic forms associated to stratifying systems , 2006 .

[14]  V. Klee,et al.  Helly's theorem and its relatives , 1963 .

[15]  Hortensia Galeana-Sánchez,et al.  Independent sets and non-augmentable paths in generalizations of tournaments , 2008, Discret. Math..

[16]  Marcelo A. Aguilar,et al.  A classification of cohomology transfers for ramified covering maps , 2006 .

[17]  N. M. Atakishiyev,et al.  On discrete q-ultraspherical polynomials and their duals , 2005 .

[18]  Sergio Rajsbaum,et al.  Cycle-Pancyclism in Multipartite Tournaments I , 2009 .

[19]  Hortensia Galeana-Sánchez,et al.  Monochromatic kernel-perfectness of special classes of digraphs , 2007, Discuss. Math. Graph Theory.

[20]  Jaime Castro Pérez,et al.  On the Atomic Dimension in Module Categories , 2005 .

[21]  Salvador Pérez-Esteva,et al.  AN ANALYTIC RADON-NIKODYM PROPERTY RELATED TO SYSTEMS OF VECTOR-VALUED CONJUGATE HARMONIC FUNCTIONS AND CLIFFORD ANALYSIS , 2007 .

[22]  Paul Kirchberger,et al.  Über Tchebychefsche Annäherungsmethoden , 1903 .

[23]  Hortensia Galeana-Sánchez Kernels in edge-coloured orientations of nearly complete graphs , 2008, Discret. Math..

[24]  Michael Barot,et al.  AN EXPLICIT CONSTRUCTION FOR THE HAPPEL FUNCTOR , 2006 .

[25]  Hortensia Galeana-Sánchez,et al.  A sufficient condition for an infinite digraph to be kernel-perfect , 2022 .

[26]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[27]  H. Whitney On the Abstract Properties of Linear Dependence , 1935 .

[28]  P Salvador,et al.  VECTOR-VALUED HARMONIC FUNCTIONS IN NON-SMOOTH DOMAINS , 2006 .

[29]  Hortensia Galeana-Sánchez,et al.  Extensions of edge-coloured digraphs , 2006 .

[30]  Robin Wilson,et al.  Graph theory and combinatorics , 1979 .

[31]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[32]  Hortensia Galeana-Sánchez,et al.  Extending Digraphs to Digraphs with (without) k-Kernel , 2008 .

[33]  Leopoldo Román,et al.  Residuated Semigroups and the Algebraic Foundations of Quantum Mechanics , 2005 .

[34]  Javier Bracho,et al.  Two geometric representation theorems for separoids , 2006, Period. Math. Hung..

[35]  Octavio Mendoza,et al.  Applications of stratifying systems to the finitistic dimension , 2006 .

[36]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[37]  T. Bisztriczky,et al.  A generalization of the Erdös-Szekeres convex n-gon theorem. , 1989 .

[38]  Peter Schmitt,et al.  Problems in Discrete and Combinatorial Geometry , 1993 .

[39]  Géza Tóth,et al.  Note on the Erdos - Szekeres Theorem , 1998, Discret. Comput. Geom..

[40]  Richard Pollack,et al.  Multidimensional Sorting , 1983, SIAM J. Comput..

[41]  R. Pollack,et al.  Geometric Transversal Theory , 1993 .

[42]  Juan José Montellano-Ballesteros,et al.  On conjectures of Frankl and El‐Zahar , 2008, J. Graph Theory.

[43]  Gyula Károlyi Ramsey-remainder for convex sets and the Erdös-Szekeres theorem , 2001, Discret. Appl. Math..

[44]  János Pach,et al.  A Generalization of the Erdos - Szekeres Theorem to Disjoint Convex Sets , 1998, Discret. Comput. Geom..

[45]  Juan José Montellano-Ballesteros,et al.  Counting polytopes via the Radon complex , 2004, J. Comb. Theory, Ser. A.

[46]  Alejandro Illanes,et al.  A tree-like continuum whose cone admits a fixed-point-free map , 2007 .

[47]  Francisco Marmolejo,et al.  Active sums II , 2006 .

[48]  RICARDO STRAUSZ,et al.  Universality of Separoids , 2004 .

[49]  Hortensia Galeana-Sánchez,et al.  Kernels in quasi-transitive digraphs , 2006, Discret. Math..

[50]  F. W. Levi,et al.  On Helly's Theorem and the Axioms of Convexity , 1951 .

[51]  H. Hadwiger Ueber Eibereiche mit gemeinsamer Treffgeraden , 1957 .

[52]  Hortensia Galeana-Sánchez,et al.  Some sufficient conditions for the existence of kernels in infinite digraphs , 2009, Discret. Math..

[53]  S. Altinok,et al.  Toric varieties associated with weighted graphs , 2007 .

[54]  Frank Sottile,et al.  Real Hessian Curves , 2005 .