Abnormal vocal behavior predicts executive and memory deficits in Alzheimer's disease

[1]  R. Wolfinger,et al.  SAS for Mixed Models , 2018 .

[2]  Emily Q. Wang,et al.  The impact of parkinson's disease on the cortical mechanisms that support auditory–motor integration for voice control , 2016, Human brain mapping.

[3]  K. Vossel,et al.  Cognition and neuropsychiatry in behavioral variant frontotemporal dementia by disease stage , 2016, Neurology.

[4]  Hiroyuki Oya,et al.  Sensory–motor networks involved in speech production and motor control: An fMRI study , 2015, NeuroImage.

[5]  V. Della-Maggiore,et al.  Sensorimotor Adaptation , 2015, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[6]  Oleg Korzyukov,et al.  Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control , 2015, Front. Neurosci..

[7]  Srikantan S. Nagarajan,et al.  Regional functional connectivity predicts distinct cognitive impairments in Alzheimer’s disease spectrum , 2014, NeuroImage: Clinical.

[8]  C. Larson,et al.  Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch , 2014, Brain and Cognition.

[9]  Fatemeh Mollaei,et al.  Sensorimotor adaptation of speech in Parkinson's disease , 2013, Movement disorders : official journal of the Movement Disorder Society.

[10]  Emily Q. Wang,et al.  Sensorimotor control of vocal pitch production in Parkinson's disease , 2013, Brain Research.

[11]  E. Chang,et al.  Human cortical sensorimotor network underlying feedback control of vocal pitch , 2013, Proceedings of the National Academy of Sciences.

[12]  Sophie K Scott,et al.  The neurobiology of speech perception and production--can functional imaging tell us anything we did not already know? , 2012, Journal of communication disorders.

[13]  Emily Q. Wang,et al.  Vocal Responses to Perturbations in Voice Auditory Feedback in Individuals with Parkinson's Disease , 2012, PloS one.

[14]  M. Gallagher,et al.  Episodic memory on the path to Alzheimer's disease , 2011, Current Opinion in Neurobiology.

[15]  Srikantan S. Nagarajan,et al.  Speech Production as State Feedback Control , 2011, Front. Hum. Neurosci..

[16]  J. Morris,et al.  The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease , 2011, Alzheimer's & Dementia.

[17]  B. Miller,et al.  Classification of primary progressive aphasia and its variants , 2011, Neurology.

[18]  Josef P. Rauschecker,et al.  An expanded role for the dorsal auditory pathway in sensorimotor control and integration , 2011, Hearing Research.

[19]  J. Krakauer,et al.  Error correction, sensory prediction, and adaptation in motor control. , 2010, Annual review of neuroscience.

[20]  J. Rauschecker,et al.  Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing , 2009, Nature Neuroscience.

[21]  Norbert Schuff,et al.  White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI , 2009, Brain : a journal of neurology.

[22]  S. Sober,et al.  Adult birdsong is actively maintained by error correction , 2009, Nature Neuroscience.

[23]  B. Miller,et al.  Neurodegenerative Diseases Target Large-Scale Human Brain Networks , 2009, Neuron.

[24]  B. Miller,et al.  Distinct MRI Atrophy Patterns in Autopsy-Proven Alzheimer's Disease and Frontotemporal Lobar Degeneration , 2008, American journal of Alzheimer's disease and other dementias.

[25]  S. Petersen,et al.  A dual-networks architecture of top-down control , 2008, Trends in Cognitive Sciences.

[26]  X. Delbeuck,et al.  Is Alzheimer's disease a disconnection syndrome? Evidence from a crossmodal audio-visual illusory experiment , 2007, Neuropsychologia.

[27]  F. Guenther,et al.  Neural mechanisms underlying sensory feedback control of speech , 2007 .

[28]  P. Scheltens,et al.  Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS–ADRDA criteria , 2007, The Lancet Neurology.

[29]  D. Poeppel,et al.  The cortical organization of speech processing , 2007, Nature Reviews Neuroscience.

[30]  Kevin G Munhall,et al.  Adaptive control of vowel formant frequency: evidence from real-time formant manipulation. , 2006, The Journal of the Acoustical Society of America.

[31]  Jay J Bauer,et al.  Vocal responses to unanticipated perturbations in voice loudness feedback: an automatic mechanism for stabilizing voice amplitude. , 2006, The Journal of the Acoustical Society of America.

[32]  John F. Houde,et al.  Compensatory responses to brief perturbations of speech amplitude , 2005 .

[33]  M. Erb,et al.  fMRI reveals two distinct cerebral networks subserving speech motor control , 2005, Neurology.

[34]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[35]  Edith Kaplan,et al.  Reliability and validity of the Delis-Kaplan Executive Function System: An update , 2004, Journal of the International Neuropsychological Society.

[36]  Howard J. Rosen,et al.  Distinctive Neuropsychological Patterns in Frontotemporal Dementia, Semantic Dementia, And Alzheimer Disease , 2003, Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology.

[37]  F. Collette,et al.  Alzheimer' Disease as a Disconnection Syndrome? , 2003, Neuropsychology Review.

[38]  Kiralee M. Hayashi,et al.  Dynamics of Gray Matter Loss in Alzheimer's Disease , 2003, The Journal of Neuroscience.

[39]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[40]  K. Perryman,et al.  Posterior Cortical Atrophy: Clinical Characteristics and Differences Compared to Alzheimer’s Disease , 2002, Dementia and Geriatric Cognitive Disorders.

[41]  Edward J. Golob,et al.  Sensory cortical interactions in aging, mild cognitive impairment, and Alzheimer’s disease , 2001, Neurobiology of Aging.

[42]  E. Miller,et al.  The prefontral cortex and cognitive control , 2000, Nature Reviews Neuroscience.

[43]  T W Troyer,et al.  An associational model of birdsong sensorimotor learning I. Efference copy and the learning of song syllables. , 2000, Journal of neurophysiology.

[44]  Jeffery A. Jones,et al.  Perceptual calibration of F0 production: evidence from feedback perturbation. , 2000, The Journal of the Acoustical Society of America.

[45]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[46]  J. Rauschecker Cortical processing of complex sounds , 1998, Current Opinion in Neurobiology.

[47]  C. Larson,et al.  Voice F0 responses to manipulations in pitch feedback. , 1998, The Journal of the Acoustical Society of America.

[48]  Michael I. Jordan,et al.  Sensorimotor adaptation in speech production. , 1998, Science.

[49]  J. Fuster The Prefrontal Cortex , 1997 .

[50]  J. Morris The Clinical Dementia Rating (CDR) , 1993, Neurology.

[51]  Thomas W. Parsons,et al.  Voice and Speech Processing , 1986 .

[52]  R B Welch,et al.  Variables affecting the intermanual transfer and decay of prism adaptation. , 1974, Journal of experimental psychology.

[53]  R. Held Plasticity in sensory-motor systems. , 1965, Scientific American.

[54]  Yvonne Schuhmacher,et al.  Feedback Control Of Dynamic Systems , 2016 .

[55]  F. Guenther,et al.  Role of the auditory system in speech production. , 2015, Handbook of clinical neurology.

[56]  J. Tanji,et al.  Role of the lateral prefrontal cortex in executive behavioral control. , 2008, Physiological reviews.

[57]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[58]  Willem J. M. Levelt,et al.  The neural correlates of language production , 2000 .