Supplementary information Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat

[1]  Silke Krol,et al.  Blood protein coating of gold nanoparticles as potential tool for organ targeting. , 2014, Biomaterials.

[2]  Manuela Semmler-Behnke,et al.  Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. , 2014, ACS nano.

[3]  Z. Fayad,et al.  Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis , 2014, Proceedings of the National Academy of Sciences.

[4]  H. Takano,et al.  Demonstration of the Clathrin- and Caveolin-Mediated Endocytosis at the Maternal–Fetal Barrier in Mouse Placenta after Intravenous Administration of Gold Nanoparticles , 2013, The Journal of veterinary medical science.

[5]  Robert Langer,et al.  Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy. , 2013, Bioconjugate chemistry.

[6]  W. Kreyling,et al.  Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles , 2013, Nanotechnology.

[7]  S. Pokhrel,et al.  Gold nanoparticle aerosols for rodent inhalation and translocation studies , 2013, Journal of Nanoparticle Research.

[8]  F. S. Henry,et al.  Nanoparticle delivery in infant lungs , 2012, Proceedings of the National Academy of Sciences.

[9]  Zahi A. Fayad,et al.  Perspectives and opportunities for nanomedicine in the management of atherosclerosis , 2011, Nature Reviews Drug Discovery.

[10]  W. Kreyling,et al.  Dynamics of pulmonary inflammation caused by isometric carbon nanoparticles or fibrous carbon nanotubes , 2011 .

[11]  J F Hainfeld,et al.  Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. , 2011, The British journal of radiology.

[12]  Yasuo Yoshioka,et al.  Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. , 2011, Nature nanotechnology.

[13]  Jeffrey A. Keelan,et al.  Nanotoxicology: nanoparticles versus the placenta. , 2011, Nature nanotechnology.

[14]  Manuela Semmler-Behnke,et al.  Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[15]  Lev Dykman,et al.  Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. , 2011, Chemical Society reviews.

[16]  Manuela Semmler-Behnke,et al.  Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration , 2011, Nanotoxicology.

[17]  Iseult Lynch,et al.  Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. , 2011, Journal of the American Chemical Society.

[18]  A. Casadevall,et al.  Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer. , 2010, International journal of radiation oncology, biology, physics.

[19]  Manuela Semmler-Behnke,et al.  Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. , 2010, Biomaterials.

[20]  Helinor J Johnston,et al.  A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity , 2010, Critical reviews in toxicology.

[21]  Nicklas Raun Jacobsen,et al.  Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation , 2009, Chemistry Central journal.

[22]  Peter Wick,et al.  Barrier Capacity of Human Placenta for Nanosized Materials , 2009, Environmental health perspectives.

[23]  Margaret Saunders,et al.  Transplacental transport of nanomaterials. , 2009, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[24]  Sabine Neuss,et al.  Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. , 2009, Small.

[25]  Jürgen Seitz,et al.  Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs , 2009, Inhalation toxicology.

[26]  Ken Takeda,et al.  Nanoparticles Transferred from Pregnant Mice to Their Offspring Can Damage the Genital and Cranial Nerve Systems , 2009 .

[27]  A. Hohimer,et al.  Responses of Amniotic Fluid Volume and Its Four Major Flows to Lung Liquid Diversion and Amniotic Infusion in the Ovine Fetus , 2009, Reproductive Sciences.

[28]  Manuela Semmler-Behnke,et al.  Biodistribution of 1.4- and 18-nm gold particles in rats. , 2008, Small.

[29]  P. Myllynen,et al.  Kinetics of gold nanoparticles in the human placenta. , 2008, Reproductive toxicology.

[30]  Kenneth A. Dawson,et al.  Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts , 2008, Proceedings of the National Academy of Sciences.

[31]  G. Schmid The relevance of shape and size of Au55 clusters. , 2008, Chemical Society reviews.

[32]  S. Hamm-Alvarez,et al.  Polystyrene nanoparticle trafficking across alveolar epithelium. , 2008, Nanomedicine : nanotechnology, biology, and medicine.

[33]  H. Jones,et al.  Copper and Iron Transport Across the Placenta: Regulation and Interactions , 2008, Journal of neuroendocrinology.

[34]  Gerhard Scheuch,et al.  Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. , 2008, American journal of respiratory and critical care medicine.

[35]  Beate Ritz,et al.  Ambient air pollution and preterm birth in the environment and pregnancy outcomes study at the University of California, Los Angeles. , 2007, American journal of epidemiology.

[36]  Jürgen Seitz,et al.  Efficient Elimination of Inhaled Nanoparticles from the Alveolar Region: Evidence for Interstitial Uptake and Subsequent Reentrainment onto Airways Epithelium , 2007, Environmental health perspectives.

[37]  W G Kreyling,et al.  Negligible clearance of ultrafine particles retained in healthy and affected human lungs , 2006, European Respiratory Journal.

[38]  Ken Takeda,et al.  Maternal Exposure to Diesel Exhaust Leads to Pathological Similarity to Autism in Newborns , 2006 .

[39]  David E Newby,et al.  Do inhaled carbon nanoparticles translocate directly into the circulation in humans? , 2006, American journal of respiratory and critical care medicine.

[40]  Ken Takeda,et al.  Maternal Diesel Exhaust Exposure Damages Newborn Murine Brains , 2006 .

[41]  Magnus Svartengren,et al.  No Significant Translocation of Inhaled 35-nm Carbon Particles to the Circulation in Humans , 2006, Inhalation toxicology.

[42]  R. Brace,et al.  Amniotic Fluid Volume and Composition in Mouse Pregnancy , 2005, The Journal of the Society for Gynecologic Investigation: JSGI.

[43]  W. Brandau,et al.  Cellular uptake and toxicity of Au55 clusters. , 2005, Small.

[44]  Wolfgang Kreyling,et al.  Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells , 2005, Environmental health perspectives.

[45]  W. Gilbert,et al.  Amniotic Fluid: Not Just Fetal Urine Anymore , 2005, Journal of Perinatology.

[46]  G. Oberdörster,et al.  Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles , 2005, Environmental health perspectives.

[47]  I. Ellinger,et al.  Endocytic and Transcytotic Processes in Villous Syncytiotrophoblast: Role in Nutrient Transport to the Human Fetus , 2004, Traffic.

[48]  W G Kreyling,et al.  Long-Term Clearance Kinetics of Inhaled Ultrafine Insoluble Iridium Particles from the Rat Lung, Including Transient Translocation into Secondary Organs , 2004, Inhalation toxicology.

[49]  Lawrence Tamarkin,et al.  Colloidal Gold: A Novel Nanoparticle Vector for Tumor Directed Drug Delivery , 2004, Drug delivery.

[50]  Ralph Weissleder,et al.  Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. , 2003, The New England journal of medicine.

[51]  Sandra L. Schmid,et al.  Regulated portals of entry into the cell , 2003, Nature.

[52]  W. Kreyling,et al.  TRANSLOCATION OF ULTRAFINE INSOLUBLE IRIDIUM PARTICLES FROM LUNG EPITHELIUM TO EXTRAPULMONARY ORGANS IS SIZE DEPENDENT BUT VERY LOW , 2002, Journal of toxicology and environmental health. Part A.

[53]  P. Kaufmann,et al.  Distensible transtrophoblastic channels in the rat placenta. , 2000, Placenta.

[54]  Stephen S. Olin,et al.  THE RELEVANCE OF THE RAT LUNG RESPONSE TO PARTICLE OVERLOAD FOR HUMAN RISK ASSESSMENT: A Workshop Consensus Report , 2000, Inhalation toxicology.

[55]  D. Bates The Particulate Whodunit: Introductory Remarks for Integrative Summary Session , 2000 .

[56]  B. Brunekreef,et al.  IMMUNE BIOMARKERS IN RELATION TO EXPOSURE TO PARTICULATE MATTER: A Cross-Sectional Survey in 17 Cities of Central Europe , 2000, Inhalation toxicology.

[57]  K. Audus,et al.  Nutrient transport across the placenta. , 1999, Advanced drug delivery reviews.

[58]  P. Kaufmann,et al.  Pressure dependence of so‐called transtrophoblastic channels during fetal perfusion of human placental villi , 1997, Microscopy research and technique.

[59]  G. Schmid,et al.  Tracer Diffusion of a Ligand-Stabilized Two-Shell Gold Cluster , 1996 .

[60]  S. Gospe,et al.  Effects of Environmental Tobacco Smoke Exposure in Utero and/or Postnatally on Brain Development1 , 1996, Pediatric Research.

[61]  J. Last,et al.  Effects of exposure to nicotine and to sidestream smoke on pregnancy outcome in rats. , 1994, Toxicology letters.

[62]  G. Schmid Clusters and Colloids , 1994 .

[63]  J. Crapo,et al.  Allometric relationships of cell numbers and size in the mammalian lung. , 1992, American journal of respiratory cell and molecular biology.

[64]  G. Schmid,et al.  The Complexation of Gold Colloids , 1989 .

[65]  B. King A cytological study of plasma membrane modifications, intercellular junctions, and endocytic activity of amniotic epithelium , 1978, The Anatomical record.

[66]  C. Ockleford,et al.  Differeniated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood: coated vesicles. , 1977, Journal of cell science.

[67]  C. Ockleford,et al.  Variation in the volume of coated vesicles isoalted from human placenta. , 1977, Cell biology international reports.

[68]  Morteza Mahmoudi,et al.  Protein-Nanoparticle Interactions , 2013 .

[69]  Yoshitake Masuda,et al.  α-Fe2O3ナノ構造体の形状制御合成:改良した光触媒分解効率のための表面特性の加工 , 2013 .

[70]  P. Mélinon,et al.  Clusters and Colloids , 2007 .

[71]  S. Fieni,et al.  Amniotic fluid dynamics. , 2004, Acta bio-medica : Atenei Parmensis.

[72]  G. Schmid,et al.  Clusters and colloids : from theory to applications , 1994 .

[73]  A. Hayes,et al.  SUBCHRONIC INHALATION STUDY IN RATS USING AGED AND DILUTED SIDESTREAM SMOKE FROM A REFERENCE CIGARETTE , 1993 .

[74]  Richard K. Moore,et al.  From theory to applications , 1986 .

[75]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .