Padé numerical schemes for the sine-Gordon equation

Abstract The sine-Gordon equation turn up in several problems in science and engineering. Although it is integrable, in practical applications, its numerical solution is powerful and versatile. Four novel implicit finite difference methods based on (q, s) Pade approximations with ( q + s ) th order in space have been developed and analyzed for this equation; all share the same treatment for the nonlinearity and integration in time. Concretely, (0,4), (2,2), (2,4), and (4,4) Pade methods; additionally, the energy conserving, Strauss–Vazquez scheme has been considered in a (0,2) Pade implementation. These methods have been compared among them for both the kink–antikink and breather solutions in terms of global error, computational cost and energy conservation. The (0,4) and (2,4) Pade methods are the most cost-effective ones for small and large global error, respectively. Our results indicate that spatial order of accuracy is more relevant to effectiveness of a method than energy conservation even in very long time integrations.

[1]  Juan I. Ramos,et al.  The sine-Gordon equation in the finite line , 2001, Appl. Math. Comput..

[2]  Mark J. Ablowitz,et al.  Method for Solving the Sine-Gordon Equation , 1973 .

[3]  P. Kevrekidis,et al.  The sine-Gordon Model and its Applications , 2014 .

[4]  Guo-Wei Wei,et al.  Lagrange Distributed Approximating Functionals , 1997 .

[5]  Numerical Search for a $\phi ^4 $ Breather Mode , 1983 .

[6]  D. B. Duncan,et al.  Sympletic Finite Difference Approximations of the Nonlinear Klein--Gordon Equation , 1997 .

[7]  Yuesheng Luo,et al.  Fourth‐order compact and energy conservative scheme for solving nonlinear Klein‐Gordon equation , 2017 .

[8]  Luigi Brugnano,et al.  Energy conservation issues in the numerical solution of the semilinear wave equation , 2014, Appl. Math. Comput..

[9]  Gurhan Gurarslan,et al.  A sixth‐order compact finite difference method for the one‐dimensional sine‐Gordon equation , 2011 .

[10]  Marjan Uddin,et al.  Numerical solution of Klein–Gordon and sine-Gordon equations by meshless method of lines , 2013 .

[11]  Mohammad Tamsir,et al.  Numerical simulation of two dimensional sine-Gordon solitons using modified cubic B-spline differential quadrature method , 2015 .

[12]  G. Lamb Elements of soliton theory , 1980 .

[13]  Mahboub Baccouch,et al.  Superconvergence of the local discontinuous Galerkin method for the sine-Gordon equation in one space dimension , 2018, J. Comput. Appl. Math..

[14]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[15]  Elena Celledoni,et al.  Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method , 2012, J. Comput. Phys..

[16]  Renhong Wang,et al.  Numerical solution of one-dimensional Sine-Gordon equation using high accuracy multiquadric quasi-interpolation , 2012, Appl. Math. Comput..

[17]  Athanassios G. Bratsos,et al.  A third order numerical scheme for the two-dimensional sine-Gordon equation , 2007, Math. Comput. Simul..

[18]  Salvador Jiménez,et al.  Derivation of the discrete conservation laws for a family of finite difference schemes , 1994 .

[19]  Robert Buckingham Peter D. Miller,et al.  Exact solutions of semiclassical non-characteristic Cauchy problems for the sine-Gordon equation , 2007, 0705.3159.

[20]  M. G. Forest,et al.  Numerical inverse spectral transform for the periodic sine-Gordon equation: theta function solutions and their linearized stability , 1991 .

[21]  L. Vázquez,et al.  Analysis of Four Numerical Schemes for a Nonlinear Klein-Gordon Equation , 1990 .

[22]  A. G. Bratsos The solution of the two-dimensional sine-Gordon equation using the method of lines , 2007 .

[23]  Athanassios G. Bratsos,et al.  A fourth order numerical scheme for the one-dimensional sine-Gordon equation , 2008, Int. J. Comput. Math..

[24]  Well-posedness and the energy and charge conservation for nonlinear wave equations in discrete space-time , 2010, 1008.3032.

[25]  Z. Fei,et al.  Two energy conserving numerical schemes for the Sine-Gordon equation , 1991 .

[26]  Yifan Wang,et al.  A fourth-order AVF method for the numerical integration of sine-Gordon equation , 2017, Appl. Math. Comput..

[27]  W. Strauss,et al.  Numerical solution of a nonlinear Klein-Gordon equation , 1978 .

[28]  Daisuke Furihata,et al.  Finite-difference schemes for nonlinear wave equation that inherit energy conservation property , 2001 .

[29]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[30]  Athanassios G. Bratsos,et al.  The solution of the sine-gordon equation using the method of lines , 1996, Int. J. Comput. Math..

[31]  Guo-Wei Wei,et al.  Discrete singular convolution for the sine-Gordon equation , 2000 .

[32]  F. Esposito,et al.  Theory and applications of the sine-gordon equation , 1971 .

[33]  Lu Trong Khiem Nguyen,et al.  A numerical scheme and some theoretical aspects for the cylindrically and spherically symmetric sine-Gordon equations , 2016, Commun. Nonlinear Sci. Numer. Simul..

[34]  Mark J. Ablowitz,et al.  Solitary wave collisions , 1979 .

[35]  Mehdi Dehghan,et al.  The dual reciprocity boundary element method (DRBEM) for two-dimensional sine-Gordon equation , 2008 .

[36]  Carlo Cattani,et al.  Evaluation of mixed Crank-Nicolson scheme and Tau method for the solution of Klein-Gordon equation , 2018, Appl. Math. Comput..

[37]  Mark J. Ablowitz,et al.  Numerical simulation of quasi-periodic solutions of the sine-Gordon equation , 1995 .

[38]  Mahboub Baccouch,et al.  Optimal energy-conserving local discontinuous Galerkin method for the one-dimensional sine-Gordon equation , 2017, Int. J. Comput. Math..

[39]  Boying Wu,et al.  Space–time Legendre–Gauss–Lobatto collocation method for two-dimensional generalized sine-Gordon equation , 2017 .

[40]  F. R. Villatoro,et al.  Solitary Waves on Graphene Superlattices , 2018 .

[41]  John Argyris,et al.  An engineer's guide to soliton phenomena: Application of the finite element method , 1987 .

[42]  Zhenzhou Lu,et al.  A numerical meshless method of soliton-like structures model via an optimal sampling density based kernel interpolation , 2015, Comput. Phys. Commun..

[43]  Wu Zong-min,et al.  A numerical method for one-dimensional nonlinear sine-Gordon equation using multiquadric quasi-interpolation , 2009 .

[44]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[45]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[46]  J. Perring,et al.  A Model unified field equation , 1962 .

[47]  L. Vu-Quoc,et al.  INVARIANT-CONSERVING FINITE DIFFERENCE ALGORITHMS FOR THE NONLINEAR KLEIN-GORDON EQUATION , 1993 .

[48]  L. Vázquez,et al.  Numerical solution of the sine-Gordon equation , 1986 .

[49]  A. Scott,et al.  The soliton: A new concept in applied science , 1973 .

[50]  Mark A. M. Lynch Large amplitude instability in finite difference approximations to the Klein-Gordon equation , 1999 .

[51]  A. S. Vasudeva Murthy,et al.  Higher order scheme for two-dimensional inhomogeneous sine-Gordon equation with impulsive forcing , 2018, Commun. Nonlinear Sci. Numer. Simul..

[52]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[53]  Mark J. Ablowitz,et al.  On the Numerical Solution of the Sine-Gordon Equation , 1996 .

[54]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..