Padé numerical schemes for the sine-Gordon equation
暂无分享,去创建一个
[1] Juan I. Ramos,et al. The sine-Gordon equation in the finite line , 2001, Appl. Math. Comput..
[2] Mark J. Ablowitz,et al. Method for Solving the Sine-Gordon Equation , 1973 .
[3] P. Kevrekidis,et al. The sine-Gordon Model and its Applications , 2014 .
[4] Guo-Wei Wei,et al. Lagrange Distributed Approximating Functionals , 1997 .
[5] Numerical Search for a $\phi ^4 $ Breather Mode , 1983 .
[6] D. B. Duncan,et al. Sympletic Finite Difference Approximations of the Nonlinear Klein--Gordon Equation , 1997 .
[7] Yuesheng Luo,et al. Fourth‐order compact and energy conservative scheme for solving nonlinear Klein‐Gordon equation , 2017 .
[8] Luigi Brugnano,et al. Energy conservation issues in the numerical solution of the semilinear wave equation , 2014, Appl. Math. Comput..
[9] Gurhan Gurarslan,et al. A sixth‐order compact finite difference method for the one‐dimensional sine‐Gordon equation , 2011 .
[10] Marjan Uddin,et al. Numerical solution of Klein–Gordon and sine-Gordon equations by meshless method of lines , 2013 .
[11] Mohammad Tamsir,et al. Numerical simulation of two dimensional sine-Gordon solitons using modified cubic B-spline differential quadrature method , 2015 .
[12] G. Lamb. Elements of soliton theory , 1980 .
[13] Mahboub Baccouch,et al. Superconvergence of the local discontinuous Galerkin method for the sine-Gordon equation in one space dimension , 2018, J. Comput. Appl. Math..
[14] Mark J. Ablowitz,et al. Solitons and the Inverse Scattering Transform , 1981 .
[15] Elena Celledoni,et al. Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method , 2012, J. Comput. Phys..
[16] Renhong Wang,et al. Numerical solution of one-dimensional Sine-Gordon equation using high accuracy multiquadric quasi-interpolation , 2012, Appl. Math. Comput..
[17] Athanassios G. Bratsos,et al. A third order numerical scheme for the two-dimensional sine-Gordon equation , 2007, Math. Comput. Simul..
[18] Salvador Jiménez,et al. Derivation of the discrete conservation laws for a family of finite difference schemes , 1994 .
[19] Robert Buckingham Peter D. Miller,et al. Exact solutions of semiclassical non-characteristic Cauchy problems for the sine-Gordon equation , 2007, 0705.3159.
[20] M. G. Forest,et al. Numerical inverse spectral transform for the periodic sine-Gordon equation: theta function solutions and their linearized stability , 1991 .
[21] L. Vázquez,et al. Analysis of Four Numerical Schemes for a Nonlinear Klein-Gordon Equation , 1990 .
[22] A. G. Bratsos. The solution of the two-dimensional sine-Gordon equation using the method of lines , 2007 .
[23] Athanassios G. Bratsos,et al. A fourth order numerical scheme for the one-dimensional sine-Gordon equation , 2008, Int. J. Comput. Math..
[24] Well-posedness and the energy and charge conservation for nonlinear wave equations in discrete space-time , 2010, 1008.3032.
[25] Z. Fei,et al. Two energy conserving numerical schemes for the Sine-Gordon equation , 1991 .
[26] Yifan Wang,et al. A fourth-order AVF method for the numerical integration of sine-Gordon equation , 2017, Appl. Math. Comput..
[27] W. Strauss,et al. Numerical solution of a nonlinear Klein-Gordon equation , 1978 .
[28] Daisuke Furihata,et al. Finite-difference schemes for nonlinear wave equation that inherit energy conservation property , 2001 .
[29] S. Reich. Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .
[30] Athanassios G. Bratsos,et al. The solution of the sine-gordon equation using the method of lines , 1996, Int. J. Comput. Math..
[31] Guo-Wei Wei,et al. Discrete singular convolution for the sine-Gordon equation , 2000 .
[32] F. Esposito,et al. Theory and applications of the sine-gordon equation , 1971 .
[33] Lu Trong Khiem Nguyen,et al. A numerical scheme and some theoretical aspects for the cylindrically and spherically symmetric sine-Gordon equations , 2016, Commun. Nonlinear Sci. Numer. Simul..
[34] Mark J. Ablowitz,et al. Solitary wave collisions , 1979 .
[35] Mehdi Dehghan,et al. The dual reciprocity boundary element method (DRBEM) for two-dimensional sine-Gordon equation , 2008 .
[36] Carlo Cattani,et al. Evaluation of mixed Crank-Nicolson scheme and Tau method for the solution of Klein-Gordon equation , 2018, Appl. Math. Comput..
[37] Mark J. Ablowitz,et al. Numerical simulation of quasi-periodic solutions of the sine-Gordon equation , 1995 .
[38] Mahboub Baccouch,et al. Optimal energy-conserving local discontinuous Galerkin method for the one-dimensional sine-Gordon equation , 2017, Int. J. Comput. Math..
[39] Boying Wu,et al. Space–time Legendre–Gauss–Lobatto collocation method for two-dimensional generalized sine-Gordon equation , 2017 .
[40] F. R. Villatoro,et al. Solitary Waves on Graphene Superlattices , 2018 .
[41] John Argyris,et al. An engineer's guide to soliton phenomena: Application of the finite element method , 1987 .
[42] Zhenzhou Lu,et al. A numerical meshless method of soliton-like structures model via an optimal sampling density based kernel interpolation , 2015, Comput. Phys. Commun..
[43] Wu Zong-min,et al. A numerical method for one-dimensional nonlinear sine-Gordon equation using multiquadric quasi-interpolation , 2009 .
[44] J. Marsden,et al. Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.
[45] M. Ablowitz,et al. Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .
[46] J. Perring,et al. A Model unified field equation , 1962 .
[47] L. Vu-Quoc,et al. INVARIANT-CONSERVING FINITE DIFFERENCE ALGORITHMS FOR THE NONLINEAR KLEIN-GORDON EQUATION , 1993 .
[48] L. Vázquez,et al. Numerical solution of the sine-Gordon equation , 1986 .
[49] A. Scott,et al. The soliton: A new concept in applied science , 1973 .
[50] Mark A. M. Lynch. Large amplitude instability in finite difference approximations to the Klein-Gordon equation , 1999 .
[51] A. S. Vasudeva Murthy,et al. Higher order scheme for two-dimensional inhomogeneous sine-Gordon equation with impulsive forcing , 2018, Commun. Nonlinear Sci. Numer. Simul..
[52] L. Vu-Quoc,et al. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .
[53] Mark J. Ablowitz,et al. On the Numerical Solution of the Sine-Gordon Equation , 1996 .
[54] Mehdi Dehghan,et al. A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..