Tailored tunnel magnetoresistance response in three ultrathin chromium trihalides.

Materials that demonstrate large magnetoresistance have attracted significant interest for many decades. Recently, extremely large tunnel magnetoresistance (TMR) has been reported by several groups across ultrathin CrI3 by exploiting the weak antiferromagnetic coupling between adjacent layers. Here, we report a comparative study of TMR in all three chromium trihalides (CrX3, X= Cl, Br, or I) in the two-dimensional limit. As the materials exhibit different transition temperatures and interlayer magnetic ordering in the ground state, tunneling measurements allow for an easy determination of the field-temperature phase diagram for the three systems. By changing sample thickness and biasing conditions, we then demonstrate how to maximize and further tailor the TMR response at different temperatures for each material. In particular, near the magnetic transition temperature, TMR is non-saturating up to the highest fields measured for all three compounds owing to the large, field-induced exchange coupling.

[1]  F. Miao,et al.  Direct Evidence for Charge Compensation-Induced Large Magnetoresistance in Thin WTe2. , 2019, Nano letters.

[2]  Xiaodong Xu,et al.  Atomically Thin CrCl3: An In-Plane Layered Antiferromagnetic Insulator. , 2019, Nano letters.

[3]  Hyun Ho Kim,et al.  Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides , 2019, Proceedings of the National Academy of Sciences.

[4]  Efthimios Kaxiras,et al.  Author Correction: Enhancement of interlayer exchange in an ultrathin two-dimensional magnet , 2019, Nature Physics.

[5]  Wei-Bing Zhang,et al.  The enhanced ferromagnetism of single-layer CrX3 (X = Br and I) via van der Waals engineering. , 2019, Physical chemistry chemical physics : PCCP.

[6]  Satoshi Okamoto,et al.  Stacking-Dependent Magnetism in Bilayer CrI3. , 2018, Nano letters.

[7]  Zhe Yuan,et al.  Stacking tunable interlayer magnetism in bilayer CrI3 , 2018, Physical Review B.

[8]  Xuan Luo,et al.  Origin of magnetoresistance suppression in thin γ−MoTe2 , 2018, Physical Review B.

[9]  Hyun Ho Kim,et al.  One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure. , 2018, Nano letters.

[10]  Jie Shan,et al.  Electric-field switching of two-dimensional van der Waals magnets , 2018, Nature Materials.

[11]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[12]  Jie Shan,et al.  Controlling magnetism in 2D CrI3 by electrostatic doping , 2018, Nature Nanotechnology.

[13]  Michael A. McGuire,et al.  Electrical control of 2D magnetism in bilayer CrI3 , 2018, Nature Nanotechnology.

[14]  Xiaodong Xu,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[15]  Takashi Taniguchi,et al.  Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3 , 2018, Nature Communications.

[16]  Jr.,et al.  Magnetic Behavior and Spin-Lattice Coupling in Cleavable, van der Waals Layered CrCl3 Crystals , 2017, 1706.01796.

[17]  J. Fern'andez-Rossier,et al.  On the origin of magnetic anisotropy in two dimensional CrI3 , 2017, 1704.03849.

[18]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[19]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[20]  F. Peeters,et al.  The work function of few-layer graphene , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  L. Balicas,et al.  Hall effect within the colossal magnetoresistive semimetallic state of MoTe 2 , 2016, 1607.03330.

[22]  Yihang Yang,et al.  Spin- and symmetry-filtering combined tunnel magnetoresistance through epitaxial MgO/EuS tunnel barriers , 2016, 1604.08186.

[23]  A. Morpurgo,et al.  Tuning magnetotransport in a compensated semimetal at the atomic scale , 2015, Nature Communications.

[24]  J. Thompson,et al.  Hall effect in the extremely large magnetoresistance semimetal WTe2 , 2015, 1509.01463.

[25]  Chi-Hang Lam,et al.  Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides , 2015, 1507.07275.

[26]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[27]  Brian C. Sales,et al.  Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3 , 2015 .

[28]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[29]  Tsubokawa Ichiro On the Magnetic Properties of a CrBr3 Single Crystal , 2013 .

[30]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[31]  Martina Müller,et al.  Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. , 2009, Physical review letters.

[32]  S. Ikeda,et al.  Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier , 2007 .

[33]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[34]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[35]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[36]  Stuart A. Wolf,et al.  Spintronics: A Spin-Based Electronics Vision for the Future , 2001, Science.

[37]  A. P. Ramirez,et al.  REVIEW ARTICLE: Colossal magnetoresistance , 1997 .

[38]  Y. Tokura,et al.  Giant magnetoresistance of manganese oxides with a layered perovskite structure , 1996, Nature.

[39]  Bruce A. Parkinson,et al.  Work Function and Photothreshold of Layered Metal Dichalcogenides , 1994 .

[40]  J. Lenz A review of magnetic sensors , 1990, Proc. IEEE.