Defining a DORIS core network for Jason-1 precise orbit determination based on ITRF2000: methods and realization

In view of the future adoption of the new precise orbit determination (POD) standards for the TOPEX/Poseidon and Jason-1 satellites, we propose a method to evaluate terrestrial reference frames for POD. We applied this method to the ITRF2000 realization of the DORIS network using local geodetic ties, plate motion models, the recent DORIS IGN04D02 cumulative solution and DORIS weekly time-series of coordinates. We propose to adopt a selection of the ITRF2000 realization based on specific criteria that we define here, and to extend it with ground stations for which we propose new coordinates and velocities. Only 13 out of 131 stations were considered to be inappropriate for POD activities. The result is a robust and well-distributed DORIS core network of 118 stations (DPOD2000) suitable for POD during the 1993–2008 period considered here.

[1]  B. T. Truong,et al.  DORIS - A precise satellite-positioning Doppler system , 1988 .

[2]  Richard G. Gordon,et al.  Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions , 1994 .

[3]  Pascal Willis,et al.  Terrestrial reference frame requirements within GGOS perspective , 2005 .

[4]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[5]  Timothy Ian Melbourne,et al.  Precursory transient slip during the 2001 Mw = 8.4 Peru earthquake sequence from continuous GPS , 2002 .

[6]  Pascal Willis,et al.  Parameter sensitivity of TOPIX orbit and derived mean sea level to DORIS stations coordinates , 2002 .

[7]  S. Williams The effect of coloured noise on the uncertainties of rates estimated from geodetic time series , 2003 .

[8]  W. Peltier Mantle Viscosity and Ice-Age Ice Sheet Topography , 1996, Science.

[9]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[10]  N. K. Pavlis,et al.  The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96 , 1998 .

[11]  Jean-François Crétaux,et al.  Vertical crustal motions from the DORIS Space‐Geodesy System , 1999 .

[12]  Y. Bar-Sever,et al.  One-Centimeter Orbit Determination for Jason-1: New GPS-Based Strategies , 2004 .

[13]  Gerard Petit,et al.  IERS Conventions (2003) , 2004 .

[14]  Zuheir Altamimi,et al.  IGS reference frames: status and future improvements , 2004 .

[15]  Claude Boucher,et al.  A review of algebraic constraints in terrestrial reference frame datum definition , 2001 .

[16]  P. Willis,et al.  DORIS as a potential part of a global geodetic observing system , 2005 .

[17]  F. LeMoine,et al.  The 1-Centimeter Orbit: Jason-1 Precision Orbit Determination Using GPS, SLR, DORIS, and Altimeter Data Special Issue: Jason-1 Calibration/Validation , 2003 .

[18]  S. Luthcke,et al.  Towards a Seamless Transition from TOPEX/Poseidon to Jason-1 , 2004 .

[19]  Arthur L. Lerner-Lam,et al.  Geodetic constraints on the rigidity and relative motion of Eurasia and North America , 2000 .

[20]  John C. Ries,et al.  Jason-1 Precision Orbit Determination by Combining SLR and DORIS with GPS Tracking Data , 2004 .

[21]  Pascal Willis,et al.  Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data , 2004 .

[22]  Pascal Willis,et al.  External validation of the GRACE GGM01C gravity field using GPS and DORIS positioning results , 2004 .

[23]  Jean-François Crétaux,et al.  Sea level changes from Topex‐Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS , 1999 .

[24]  Jean-François Crétaux,et al.  Present‐day tectonic plate motions and crustal deformations from the DORIS space system , 1998 .

[25]  Simon D. P. Williams,et al.  Offsets in Global Positioning System time series , 2003 .